6 resultados para Direct manipulation

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model transformations are a crucial part of Model-Driven Engineering (MDE) technologies but are usually hard to specify and maintain for many engineers. Most current approaches use meta-model-driven transformation specification via textual scripting languages. These are often hard to specify, understand and maintain. We present a novel approach that instead allows domain experts to discover and specify transformation correspondences using concrete visualizations of example source and target models. From these example model correspondences, complex model transformation implementations are automatically generated. We also introduce a recommender system that helps domain experts and novice users find possible correspondences between large source and target model visualization elements. Correspondences are then specified by directly interacting with suggested recommendations or drag and drop of visual notational elements of source and target visualizations. We have implemented this approach in our prototype tool-set, CONVErT, and applied it to a variety of model transformation examples. Our evaluation of this approach includes a detailed user study of our tool and a quantitative analysis of the recommender system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Should computer programming be taught within schools of architecture?

Incorporating even low-level computer programming within architectural education curricula is a matter of debate but we have found it useful to do so for two reasons: as an introduction or at least a consolidation of the realm of descriptive geometry and in providing an environment for experimenting in morphological time-based change.

Mathematics and descriptive geometry formed a significant proportion of architectural education until the end of the 19th century. This proportion has declined in contemporary curricula, possibly at some cost for despite major advances in automated manufacture, Cartesian measurement is still the principal ‘language’ with which to describe building for construction purposes. When computer programming is used as a platform for instruction in logic and spatial representation, the waning interest in mathematics as a basis for spatial description can be readdressed using a left-field approach. Students gain insights into topology, Cartesian space and morphology through programmatic form finding, as opposed to through direct manipulation.

In this context, it matters to the architect-programmer how the program operates more than what it does. This paper describes an assignment where students are given a figurative conceptual space comprising the three Cartesian axes with a cube at its centre. Six Phileban solids mark the Cartesian axial limits to the space. Any point in this space represents a hybrid of one, two or three transformations from the central cube towards the various Phileban solids. Students are asked to predict the topological and morphological outcomes of the operations. Through programming, they become aware of morphogenesis and hybridisation. Here we articulate the hypothesis above and report on the outcome from a student group, whose work reveals wider learning opportunities for architecture students in computer programming than conventionally assumed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Virtual reality systems are becoming a must for product and process design, training practices and ergonomic analysis in many manufacturing industries. The automotive sector is considered to be the leader in applying virtual reality (VR) solutions for real-world, non-trivial, problems. Although, a number of commercial 3D engineering tools for digital mockups exist, most of them lack intuitive direct manipulation of the digital mockups. The majority of these 3D engineering tools are constrained to the interaction mainly with rigid objects which is just half the story. To bridge this gap, we have developed a haptics interface for modelling and simulation of flexible objects. The graphical and haptic user interface developed allows the creation of multiple one dimensional (1D) flexible objects, such as hoses, cables and harnesses. The user is required to provide the mechanical properties of the material such as Young's modulus, Poisson's ratio, material density, damping factors, as well as dimensional properties such as length, and inner and outer diameters of the flexible object. Flexilution solver is employed to estimate and simulate the dynamic behaviour of flexible objects in response to external user interaction, whereas Nvidia's generic physics engine is used to simulate the behaviour of rigid objects. A generic communication interface is developed to accommodate a variety of devices without the reconfiguration of the simulation platform.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Handle-related properties of woollen fabrics have been demonstrated to be major factors affecting consumer buying attitudes. Handle is the combination of both textural and compressional attributes. Compressional handle has demonstrated processing advantages in woven and knitted fabrics. The handle of processing lots can be manipulated using a variety of technologies but direct manipulation of textural greasy wool handle pre-processing is still crude. On-farm, there is documented evidence that including handle assessment in a selection index provides additional improvements in genetic gain. However, the assessment of greasy wool handle is based on a tactile evaluation of the wool staple by sheep and wool classers, and its application is affected by a lack of framework that instructs assessors on a standard method of assessment. Once a reliable and repeatable protocol is developed, further understanding of the effect greasy wool handle has on final garment quality will be possible.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a simple and available system for manipulation of heavy tools by low powered manipulator for industrial applications. In the heavy manufacturing industries, sometimes, heavy tools are employed for different types of work. But the application of robots with heavy tools is not possible due to the limited torque limits of actuators. Suspended tool systems (STS) have been proposed to manipulate heavy tools by low powered robot-arm for this purpose. A low powered five-bar direct-drive parallel manipulator is designed and constructed to manipulate heavy tools suspended from a spring balancer. The validity, usefulness, and effectiveness of the suspended tool system are shown by experimental results.