3 resultados para Differential degradation

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticies have been widely used to enhance the properties of natural rubber (NR). In the present paper a novel nanocomposite was developed by blending nano-ZnO slurry with prevulcanized NR latex, and the thermal degradation process of pure NR and NR/ZnO nanocomposites with different nano-ZnO loading was studied with a Perkin Elemer TGA-7 thermogravimetric analyzer. The thermal degradation parameters of NR/ZnO (2 parts ZnO per hundred dlY rubber) at different heating rates (Bs) were studied. The results show that the thermal degradation of pure NR and NR/ZnO nanocomposites in nitrogen is a one-step reaction. The degradation temperatures of NR/ZnO nanocomposite increase with an increasing B. The peak height (Rp) on the differential thermogravimetric curve increases with the increase of B. The degradation rates are not affected significantly by B, and the average values of thermal degradation rate Cp and Cf are 44.42 % and 81.04 %, respectively. The thermal degradation kinetic parameters are calculated with Ozawa-Flynn-Wall method. The activation energy (E) and the frequency factor (A) vary with ecomposition degree, and can be divided into three phases corresponding to the volatilization of low-molecular-weight materials, the thermal degradation ofNR main chains and the decomposition of residual carbon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal resistance is one of the most dominative properties for polymer materials. Thermal degradation mechanisms of epoxidized natural rubber (ENR) and NR are studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results show that, the introduction of epoxy groups into the NR molecular main chain leads to a remarkable change in the degradation mechanism. The thermal stability of ENR is worse than that of NR. For the first thermooxidative degradation stage, the thermal decomposition mechanism of ENR is similar to that of NR, which corresponds to a mechanism involving one-dimensional diffusion. For the second stage, the thermal decomposition mechanism of ENR is a three-dimensional diffusion, which is more complex than that of NR. Kinetic analysis showed that activation energy (E?), activation entropy (?H) and activation Gibbs energy (?G) values are all positive, indicating that the thermooxidative degradation process of ENR is non-spontaneous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic coatings have been used in conjunction with cathodic protection as the most economical method of corrosion protection by the oil and gas pipeline industry. In a bid to prolong the life of the pipelines, the degradation and failure of pipeline coatings under the effects of major influencing factors including mechanical stress, the environmental corrosivity and cathodic protection have been extensively investigated over the past decades. This paper provides an overview of recent research for understanding coating degradation under the effect of these factors, either individually or in combination. Electrochemical impedance spectroscopy remains the primary and the most commonly used technique of studying the degradation of organic coatings, although there have been attempts to use other techniques such as electrochemical polarization (both dynamic and static), electrochemical noise, Scanning Kelvin Probe, Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry and Dynamic Mechanical Analyser. Major knowledge and technological gaps in the investigation of the combined effects of mechanical stress, environmental corrosivity and cathodic protection on coating degradation have been identified.