4 resultados para De-noising

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Least square problem with l1 regularization has been proposed as a promising method for sparse signal reconstruction (e.g., basis pursuit de-noising and compressed sensing) and feature selection (e.g., the Lasso algorithm) in signal processing, statistics, and related fields. These problems can be cast as l1-regularized least-square program (LSP). In this paper, we propose a novel monotonic fixed point method to solve large-scale l1-regularized LSP. And we also prove the stability and convergence of the proposed method. Furthermore we generalize this method to least square matrix problem and apply it in nonnegative matrix factorization (NMF). The method is illustrated on sparse signal reconstruction, partner recognition and blind source separation problems, and the method tends to convergent faster and sparser than other l1-regularized algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Speaker recognition is the process of automatically recognizing the speaker by analyzing individual information contained in the speech waves. In this paper, we discuss the development of an intelligent system for text-dependent speaker recognition. The system comprises two main modules, a wavelet-based signal-processing module for feature extraction of speech waves, and an artificial-neural-network-based classifier module to identify and categorize the speakers. Wavelet is used in de-noising and in compressing the speech signals. The wavelet family that we used is the Daubechies Wavelets. After extracting the necessary features from the speech waves, the features were then fed to a neural-network-based classifier to identify the speakers. We have implemented the Fuzzy ARTMAP (FAM) network in the classifier module to categorize the de-noised and compressed signals. The proposed intelligent learning system has been applied to a case study of text-dependent speaker recognition problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Image reduction is a crucial task in image processing, underpinning many practical applications. This work proposes novel image reduction operators based on non-monotonic averaging aggregation functions. The technique of penalty function minimisation is used to derive a novel mode-like estimator capable of identifying the most appropriate pixel value for representing a subset of the original image. Performance of this aggregation function and several traditional robust estimators of location are objectively assessed by applying image reduction within a facial recognition task. The FERET evaluation protocol is applied to confirm that these non-monotonic functions are able to sustain task performance compared to recognition using nonreduced images, as well as significantly improve performance on query images corrupted by noise. These results extend the state of the art in image reduction based on aggregation functions and provide a basis for efficiency and accuracy improvements in practical computer vision applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic Resonance images (MRI) do not only exhibit sparsity but their sparsity take a certain predictable shape which is common for all kinds of images. That region based localised sparsity can be used to de-noise MR images from random thermal noise. This paper present a simple framework to exploit sparsity of MR images for image de-noising. As, noise in MR images tends to change its shape based on contrast level and signal itself, the proposed method is independent of noise shape and type and it can be used in combination with other methods.