85 resultados para Data selection

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Active video games (AVGs) have gained interest as a way to increase physical activity in children and youth. The effect of AVGs on acute energy expenditure (EE) has previously been reported; however, the influence of AVGs on other health-related lifestyle indicators remains unclear.

OBJECTIVE: This systematic review aimed to explain the relationship between AVGs and nine health and behavioural indicators in the pediatric population (aged 0-17 years). DATA SOURCES: Online databases (MEDLINE, EMBASE, psycINFO, SPORTDiscus and Cochrane Central Database) and personal libraries were searched and content experts were consulted for additional material.

DATA SELECTION: Included articles were required to have a measure of AVG and at least one relevant health or behaviour indicator: EE (both habitual and acute), adherence and appeal (i.e., participation and enjoyment), opportunity cost (both time and financial considerations, and adverse events), adiposity, cardiometabolic health, energy intake, adaptation (effects of continued play), learning and rehabilitation, and video game evolution (i.e., sustainability of AVG technology).

RESULTS: 51 unique studies, represented in 52 articles were included in the review. Data were available from 1992 participants, aged 3-17 years, from 8 countries, and published from 2006-2012. Overall, AVGs are associated with acute increases in EE, but effects on habitual physical activity are not clear. Further, AVGs show promise when used for learning and rehabilitation within special populations. Evidence related to other indicators was limited and inconclusive.

CONCLUSIONS: Controlled studies show that AVGs acutely increase light- to moderate-intensity physical activity; however, the findings about if or how AVG lead to increases in habitual physical activity or decreases in sedentary behaviour are less clear. Although AVGs may elicit some health benefits in special populations, there is not sufficient evidence to recommend AVGs as a means of increasing daily physical activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microarray data classification is one of the most important emerging clinical applications in the medical community. Machine learning algorithms are most frequently used to complete this task. We selected one of the state-of-the-art kernel-based algorithms, the support vector machine (SVM), to classify microarray data. As a large number of kernels are available, a significant research question is what is the best kernel for patient diagnosis based on microarray data classification using SVM? We first suggest three solutions based on data visualization and quantitative measures. Different types of microarray problems then test the proposed solutions. Finally, we found that the rule-based approach is most useful for automatic kernel selection for SVM to classify microarray data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Generalized Estimating Equations (GEE) method is one of the most commonly used statistical methods for the analysis of longitudinal data in epidemiological studies. A working correlation structure for the repeated measures of the outcome variable of a subject needs to be specified by this method. However, statistical criteria for selecting the best correlation structure and the best subset of explanatory variables in GEE are only available recently because the GEE method is developed on the basis of quasi-likelihood theory. Maximum likelihood based model selection methods, such as the widely used Akaike Information Criterion (AIC), are not applicable to GEE directly. Pan (2001) proposed a selection method called QIC which can be used to select the best correlation structure and the best subset of explanatory variables. Based on the QIC method, we developed a computing program to calculate the QIC value for a range of different distributions, link functions and correlation structures. This program was written in Stata software. In this article, we introduce this program and demonstrate how to use it to select the most parsimonious model in GEE analyses of longitudinal data through several representative examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Feature selection is an important technique in dealing with application problems with large number of variables and limited training samples, such as image processing, combinatorial chemistry, and microarray analysis. Commonly employed feature selection strategies can be divided into filter and wrapper. In this study, we propose an embedded two-layer feature selection approach to combining the advantages of filter and wrapper algorithms while avoiding their drawbacks. The hybrid algorithm, called GAEF (Genetic Algorithm with embedded filter), divides the feature selection process into two stages. In the first stage, Genetic Algorithm (GA) is employed to pre-select features while in the second stage a filter selector is used to further identify a small feature subset for accurate sample classification. Three benchmark microarray datasets are used to evaluate the proposed algorithm. The experimental results suggest that this embedded two-layer feature selection strategy is able to improve the stability of the selection results as well as the sample classification accuracy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Feature selection techniques are critical to the analysis of high dimensional datasets. This is especially true in gene selection from microarray data which are commonly with extremely high feature-to-sample ratio. In addition to the essential objectives such as to reduce data noise, to reduce data redundancy, to improve sample classification accuracy, and to improve model generalization property, feature selection also helps biologists to focus on the selected genes to further validate their biological hypotheses.
Results: In this paper we describe an improved hybrid system for gene selection. It is based on a recently proposed genetic ensemble (GE) system. To enhance the generalization property of the selected genes or gene subsets and to overcome the overfitting problem of the GE system, we devised a mapping strategy to fuse the goodness information of each gene provided by multiple filtering algorithms. This information is then used for initialization and mutation operation of the genetic ensemble system.
Conclusion: We used four benchmark microarray datasets (including both binary-class and multi-class classification problems) for concept proving and model evaluation. The experimental results indicate that the proposed multi-filter enhanced genetic ensemble (MF-GE) system is able to improve sample classification accuracy, generate more compact gene subset, and converge to the selection results more quickly. The MF-GE system is very flexible as various combinations of multiple filters and classifiers can be incorporated based on the data characteristics and the user preferences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of "model selection" for expressing a wide range of constitutive behaviour adequately using hot torsion test data was considered here using a heuristic approach. A model library including several nested parametric linear and non-linear models was considered and applied to a set of hot torsion test data for API-X 70 micro-alloyed steel with a range of strain rates and temperatures. A cost function comprising the modelled hot strength data and that of the measured data were utilized in a heuristic model selection scheme to identify the optimum models. It was shown that a non-linear rational model including ten parameters is an optimum model that can accurately express the multiple regimes of hardening and softening for the entire range of the experiment. The parameters for the optimum model were estimated and used for determining variations of hot strength of the samples with deformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of instance selection is to identify which instances (examples, patterns) in a large dataset should be selected as representatives of the entire dataset, without significant loss of information. When a machine learning method is applied to the reduced dataset, the accuracy of the model should not be significantly worse than if the same method were applied to the entire dataset. The reducibility of any dataset, and hence the success of instance selection methods, surely depends on the characteristics of the dataset, as well as the machine learning method. This paper adopts a meta-learning approach, via an empirical study of 112 classification datasets from the UCI Repository [1], to explore the relationship between data characteristics, machine learning methods, and the success of instance selection method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the issues associated with pattern classification using data based machine learning systems is the “curse of dimensionality”. In this paper, the circle-segments method is proposed as a feature selection method to identify important input features before the entire data set is provided for learning with machine learning systems. Specifically, four machine learning systems are deployed for classification, viz. Multilayer Perceptron (MLP), Support Vector Machine (SVM), Fuzzy ARTMAP (FAM), and k-Nearest Neighbour (kNN). The integration between the circle-segments method and the machine learning systems has been applied to two case studies comprising one benchmark and one real data sets. Overall, the results after feature selection using the circle segments method demonstrate improvements in performance even with more than 50% of the input features eliminated from the original data sets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper introduces a novel method for gene selection based on a modification of analytic hierarchy process (AHP). The modified AHP (MAHP) is able to deal with quantitative factors that are statistics of five individual gene ranking methods: two-sample t-test, entropy test, receiver operating characteristic curve, Wilcoxon test, and signal to noise ratio. The most prominent discriminant genes serve as inputs to a range of classifiers including linear discriminant analysis, k-nearest neighbors, probabilistic neural network, support vector machine, and multilayer perceptron. Gene subsets selected by MAHP are compared with those of four competing approaches: information gain, symmetrical uncertainty, Bhattacharyya distance and ReliefF. Four benchmark microarray datasets: diffuse large B-cell lymphoma, leukemia cancer, prostate and colon are utilized for experiments. As the number of samples in microarray data datasets are limited, the leave one out cross validation strategy is applied rather than the traditional cross validation. Experimental results demonstrate the significant dominance of the proposed MAHP against the competing methods in terms of both accuracy and stability. With a benefit of inexpensive computational cost, MAHP is useful for cancer diagnosis using DNA gene expression profiles in the real clinical practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice.