77 resultados para DEFORMATION-BEHAVIOR

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructure and deformation behavior of the commercial aluminum-based Al7.5%Zn–2.7%Mg–2.3%Cu–0.15%Zr alloy subjected to high pressure torsion (HPT) were studied in the present work. A small grain size less than 100 nm, high level of internal stresses and presence of second phase nanoparticles were revealed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The nanostructured alloy processed by HPT exhibits tensile strength of 800 MPa and ductility of 20% at optimal temperature-strain rate conditions. Unusual influence of a short pre-annealing on tensile strength and ductility of as-processed alloy is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the mechanical properties of a closed-cell aluminium foam have been investigated by compressive tests. The deformation behaviors of the aluminium foams were studied using X-ray microtomography (XMT). Aluminium foam samples with various cell size distributions and cell
morphologies were intentionally selected to investigate the effect of the cell characteristics on the deformation behaviors. Results indicated that the deformation of the aluminium foams under compressive loading was localized in narrow continuous deformation bands having widths of order of a cell diameter. The cells in the deformation bands collapsed by a mixed deformation mechanism, which includes mainly bending, and also minor buckling and yielding as well. Different fractions of the three deformation modes led to variations in the peak stress and energy absorption for different foam samples with the same density. It was also found that the cell morphology affected the deformation mechanism significantly, whilst the cell size showed little influence. Those cells with defects such as corrugations, curvatures and non-uniformities in the wall thickness were the initiators of the deformation bands of the aluminium foam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning white beam X-ray microdiffraction has been used to study the heterogeneous grain deformation in a polycrystalline Mg alloy (MgAZ31). The high spatial resolution achieved on beamline 7.3.3 at the Advanced Light Source provides a unique method to measure the elastic strain and orientation of single grains as a function of applied load. To carry out in-situ measurements a light weight (~0.5kg) tensile stage, capable of providing uniaxial loads of up to 600kg, was designed to collect diffraction data on the loading and unloading cycle. In-situ observation of the deformation process provides insight about the crystallographic deformation mode via twinning and dislocation slip.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructure evolution after solutionizing and ageing treatment of cast AZ80 Mg alloy were investigated using optical and scanning electron microscopy. Effect of these treatments on grain size, β-Mg17Al12 intermetallic phase, mechanical behavior, and flow asymmetry were investigated. The initial continuous network of β-phase found to be reduced after solutionizing. The dissolution of β-phase and simultaneous grain growth are found to be interrelated. Mechanical properties including yield strength, maximum strength (ultimate compressive strength), and maximum strain attainable in compressive found almost twice than the corresponding values obtained in tension. The asymmetry in compressive and tensile properties is found to decrease with grain size at certain solutionizing duration. Particular heat treatment found to offer best combination of tensile compressive flow properties in AZ80 Mg alloy. Aging under certain conditions found to minimize the strength asymmetry. © ASM International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of deformation parameters on the flow behavior of a Ti6Al4V alloy has been studied to understand the deformation mechanisms during hot compression. Cylindrical samples with partially equiaxed grains were deformed in the α+β phase region at different thermo-mechanical conditions. To develop components with tailored properties, the physically based Estrin and Mecking (EM) model for the work hardening/dynamic recovery combined with the Avrami equation for dynamic recrystallization was used to predict the flow stress at varying process conditions. The EM model revealed good predictability up to the peak strain, however, at strain rates below 0.01s-1, a higher B value was observed due to the reduced density of dislocation tangles. In contrast, the flow softening model revealed higher value of constants a and b at high strain rates due to the reduction in the volume fraction of dynamic recrystallization and larger peak strain. The predicted flow stress using the combined EM+Avrami model revealed good agreement with the measured flow stress resulted in very low average absolute relative error value. The microstructural analysis of the samples suggests the formation of coarse equiaxed grains together with the increased β phase fraction at low strain rate leads to a higher flow softening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafine-grained (UFG) metals produced by equal channel angular pressing (ECAP) exhibit outstanding mechanical properties. They show high strength under monotonic loading as well as strongly enhanced fatigue lives in the Wöhler S-N-plot compared to their coarse grained (CG) counterparts. It could be shown that the fatigue lives can be significantly enhanced further by applying backpressure during ECAP. Besides the positive effect of backpressure on the processability of hard to deform materials via ECAP, the hydrostatic stress induced by backpressure also influences the mechanical properties under monotonic and cyclic loading. Therefore the influence of backpressure on ECAPed Cu99.5 and on the ECAPed aluminum alloy AA5754 was investigated. It is shown that backpressure has no effect on the hardness and grain size in Cu99.5 but changes the grain boundary misorientation to higher fractions of low angle grain boundaries. Also the temperature dependency of the yield strength as well as the hardening behavior under monotonic compression is affected. The cyclic deformation behavior of Cu99.5 is not strongly influenced by backpressure, but the mean stress level changes drastically. The fatigue life increases with the application of backpressure at low plastic amplitudes due to a change in the crack initiation and propagation. Aim of this work is the investigation of the influence of backpressure during equal channel angular pressing (ECAP) on the mechanical properties under monotonic and cyclic loading. Therefore we performed hardness measurements, compression, and fatigue tests on ECAPed Cu99.5 and AA5754. The results are discussed in terms of microstructure and relevant deformation and damage mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel ultra-high strength TRIP (transformation induced plasticity) steel, with ~1.5. GPa strength and good ductility of ~26% has been produced. The microstructure consists of ultrafine ferrite, and a large volume fraction of austenite. The flow stress was significantly increased by a reduction in the grain size, but the effect of strain rate on the flow stress was negligible. The formation of stress induced martensite was found to increase linearly with strain, and a reduction in the grain size correlated with an increase in the stress required to form the martensite.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of low-strain deformation behavior on curl and springback in advanced high strength steels (AHSS) was assessed using a bend-under-tension test. The effect of yielding behavior on curl and springback was examined by heat-treating two dual-phase steels to induce yield point elongation, while keeping a relatively constant tensile strength and a constant sheet thickness. A dual-phase and TRIP steel with similar initial thickness and tensile strengths were also examined to investigate the effect of work-hardening on curl and springback. It is shown that while current understanding limits prediction of curl and springback in bending under tension using only the initial sheet thickness and tensile strength, both the yielding and work-hardening behavior can affect the results. Explanations for these effects are proposed in terms of the discontinuous yielding and flow stress in the materials.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The hot deformation behavior of a 304 austenitic stainless steel was investigated to characterize the evolution of the dynamically recrystallized structure as a starting point for studies of the postdeformation  recrystallization behavior. The effect of different deformation parameters such as strain, strain rate, and temperature were investigated. The flow curves showed typical signs of dynamic recrystallization (DRX) over a wide range of temperatures and strain rates (i.e., different Zener–Hollomon (Z) values). However, under very high or very low Z values, the flow curves’ shapes changed toward those of the dynamic recovery and multiple peaks, respectively. The results showed that while DRX starts at a strain as low as 60 pct of the peak strain, a fully DRX microstructure needs a high strain of almost 4.5 times the initiation strain. The DRX average grain size showed power-law functions with both the Zener–Hollomon parameter and the peak stress, although power-law breakdown was observed at high Z values.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work focuses on the deformation behavior of an ultra-fine grained Al-Mg-Si alloy processed by equal channel angular pressing over a wide range of temperatures and strain rates. The effect of temperature and strain rate on the homogeneity of plastic deformation, the evolution of microstructure, the strain rate sensitivity and the underlying deformation mechanisms are investigated. It is demonstrated that the localization of plastic deformation at the micro scale is triggered by grain boundary sliding due to grain boundary sliding due to grain boundary diffusion. The contributions of different deformation mechanisms during the plastic deformation of the material are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mg-based metallic glass interpenetrating phase composites (IPCs) containing 30-70 vol% titanium was fabricated in this study. The effects of reinforced phase volume fraction and interspace on the mechanical properties were investigated systematically. With increasing the volume fraction of titanium, the fracture strength and strain increased up to 1860 MPa and 44%, respectively. The results showed that the critical volume fraction (around 40%) of Ti metal should be required for significantly improving plasticity of IPC. Decreasing the interspace of the titanium phase could lead to enhancement of yield and fracture strength. The deformation behavior and strengthening mechanisms were discussed in detail.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ti-5553 is a relatively new titanium alloy with applications particularly in the aerospace industry for such key structural components as landing gear. However, during machining of Ti-5553, the elevated temperature and high strain at tool-workpiece interface may alter workpiece microstructure and result in ß to a phase transformation. During phase transformation, some intermediated phase such as w phase may form which is brittle and hard to machine, and it could reduce the fatigue life of machined components. The aim of this research work is to optimize the machining condition for Ti-5553, in which its hot deformation behavior in terms of ß to a phase transformation could be fully understood. Analysis of variables such as micrographs of phase components and cutting zone temperature demonstrates that the cutting temperature governs the formation of final phase components and to some extent this variation has been quantified to allow for further and more detailed investigation.