3 resultados para Cytokines, Pneumonia, Children, M. pneumoniae

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine a mathematical model for the transmission of Streptococcus Pneumoniae amongst young children when the carriage transmission coefficient depends on the serotype. Carriage means pneumococcal colonization. There are two sequence types (STs) spreading in a population each of which can be expressed as one of two serotypes. We derive the differential equation model for the carriage spread and perform an equilibrium and global stability analysis on it. A key parameter is the effective reproduction number R e. For R e ≤ 1,  there is only the carriage-free equilibrium (CFE) and the carriage will die out whatever be the starting values. For R e > 1, unless the effective reproduction numbers of the two STs are equal, in addition to the CFE there are two carriage equilibria, one for each ST. If the ST with the largest effective reproduction number is initially present, then in the long-term the carriage will tend to the corresponding equilibrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, the Fiji Pneumococcal Project (FiPP) evaluated reduced dose immunization schedules that incorporated pneumococcal protein conjugate and/or polysaccharide vaccine (PCV7 and 23vPPV, respectively). Immune hyporesponsiveness was observed in children vaccinated with 23vPPV at 12 months of age compared with children who did not receive 23vPPV.

Here we assess the long-term impact of 23vPPV vaccination on nasopharyngeal carriage rates and densities of Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus and Moraxella catarrhalis. Nasopharyngeal swabs (n = 194) were obtained from healthy children who participated in FiPP (now aged 5–7 years). S. pneumoniae were isolated and identified by standard culture-based methods, and serotyped using latex agglutination and the Quellung reaction. Carriage rates and densities of S. pneumoniae, H. influenzae, S. aureus and M. catarrhalis were determined using real-time quantitative PCR.

There were no differences in the rate or density of S. pneumoniae, H. influenzae or M. catarrhalis carriage by PCV7 dose or 23vPPV vaccination in the vaccinated participants overall. However, differences were observed between the two main ethnic groups: Fijian children of Indian descent (Indo-Fijian) were less likely to carry S. pneumoniae, H. influenzae and M. catarrhalis, and there was evidence of a higher carriage rate of S. aureus compared with indigenous Fijian (iTaukei) children. Polysaccharide vaccination appeared to have effects that varied between ethnic groups, with 23vPPV vaccination associated with a higher carriage rate of S. aureus in iTaukei children, while there was a lower carriage rate of S. pneumoniae associated with 23vPPV vaccination in Indo-Fijian children.

Overall, polysaccharide vaccination had no long-term impact on pneumococcal carriage, but may have impacted on S. aureus carriage and have varying effects in ethnic groups, suggesting current WHO vaccine schedule recommendations against the use of 23vPPV in children under two years of age are appropriate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Respiratory rate is an important sign that is commonly either not recorded or recorded incorrectly. Mobile phone ownership is increasing even in resource-poor settings. Phone applications may improve the accuracy and ease of counting of respiratory rates. OBJECTIVES: The study assessed the reliability and initial users' impressions of four mobile phone respiratory timer approaches, compared to a 60-second count by the same participants. METHODS: Three mobile applications (applying four different counting approaches plus a standard 60-second count) were created using the Java Mobile Edition and tested on Nokia C1-01 phones. Apart from the 60-second timer application, the others included a counter based on the time for ten breaths, and three based on the time interval between breaths ('Once-per-Breath', in which the user presses for each breath and the application calculates the rate after 10 or 20 breaths, or after 60s). Nursing and physiotherapy students used the applications to count respiratory rates in a set of brief video recordings of children with different respiratory illnesses. Limits of agreement (compared to the same participant's standard 60-second count), intra-class correlation coefficients and standard errors of measurement were calculated to compare the reliability of the four approaches, and a usability questionnaire was completed by the participants. RESULTS: There was considerable variation in the counts, with large components of the variation related to the participants and the videos, as well as the methods. None of the methods was entirely reliable, with no limits of agreement better than -10 to +9 breaths/min. Some of the methods were superior to the others, with ICCs from 0.24 to 0.92. By ICC the Once-per-Breath 60-second count and the Once-per-Breath 20-breath count were the most consistent, better even than the 60-second count by the participants. The 10-breath approaches performed least well. Users' initial impressions were positive, with little difference between the applications found. CONCLUSIONS: This study provides evidence that applications running on simple phones can be used to count respiratory rates in children. The Once-per-Breath methods are the most reliable, outperforming the 60-second count. For children with raised respiratory rates the 20-breath version of the Once-per-Breath method is faster, so it is a more suitable option where health workers are under time pressure.