35 resultados para Cytochrome c oxydase

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrated ionic liquids (ILs) were prepared by adding appropriate amounts of water to hydrophilic ILs. Some hydrated ILs show excellent solubilizing ability for proteins, keeping the basic properties of ILs. The solubility of cytochrome c (cyt c) depended on the structure of the component ions. When component anions have oxo acid residues, the resulting hydrated ILs solubilize cyt c quite well. In such hydrated ILs, the structure and activity of cyt c is influenced by the kosmotropicity of the component ions. We synthesized ILs from various ions having different kosmotropicity, including dihydrogen phosphate (dhp), dibutylphosphate, acetate, lactate, and methanesulfonate as anions. The activity of the dissolved cyt c depends on the permutations of kosmotropicity of the component ions. cyt c shows no structural change and retains its activity when dissolved in the hydrated choline dhp, which is an excellent combination of chaotropic cation and kosmotropic anion. Furthermore, cyt c dissolved in the hydrated choline dhp remained in a native state and was active after 18 months of storage at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training.

Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training.

These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Copper is an essential element for the activity of a number of physiologically important enzymes. Enzyme-related malfunctions may contribute to severe neurological symptoms and neurological diseases: copper is a component of cytochrome c oxidase, which catalyzes the reduction of oxygen to water, the essential step in cellular respiration. Copper is a cofactor of Cu/Zn-superoxide-dismutase which plays a key role in the cellular response to oxidative stress by scavenging reactive oxygen species. Furthermore, copper is a constituent of dopamine-β-hydroxylase, a critical enzyme in the catecholamine biosynthetic pathway. A detailed exploration of the biological importance and functional properties of proteins associated with neurological symptoms will have an important impact on understanding disease mechanisms and may accelerate development and testing of new therapeutic approaches. Copper binding proteins play important roles in the establishment and maintenance of metal-ion homeostasis, in deficiency disorders with neurological symptoms (Menkes disease, Wilson disease) and in neurodegenerative diseases (Alzheimer’s disease). The Menkes and Wilson proteins have been characterized as copper transporters and the amyloid precursor protein (APP) of Alzheimer’s disease has been proposed to work as a Cu(II) and/or Zn(II) transporter. Experimental, clinical and epidemiological observations in neurodegenerative disorders like Alzheimer’s disease and in the genetically inherited copper-dependent disorders Menkes and Wilson disease are summarized. This could provide a rationale for a link between severely dysregulated metal-ion homeostasis and the selective neuronal pathology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitric oxide (NO) is known to mediate a multitude of biological effects including inhibition of respiration at cytochrome c oxidase (COX), formation of peroxynitrite (ONOO) by reaction with mitochondrial superoxide (O2• −), and S-nitrosylation of proteins. In this study, we investigated pathways of NO metabolism in lymphoblastic leukemic CEM cells in response to glutathione (GSH) depletion. We found that NO blocked mitochondrial protein thiol oxidation, membrane permeabilization, and cell death. The effects of NO were: (1) independent of respiratory chain inhibition since protection was also observed in CEM cells lacking mitochondrial DNA (ρ0) which do not possess a functional respiratory chain and (2) independent of ONOO formation since nitrotyrosine (a marker for ONOOformation) was not detected in extracts from cells treated with NO after GSH depletion. However, NO increased the level of mitochondrial protein S-nitrosylation (SNO) determined by the Biotin Switch assay and by the release of NO from mitochondrial fractions treated with mercuric chloride (which cleaves SNO bonds to release NO). In conclusion, these results indicate that NO blocks cell death after GSH depletion by preserving the redox status of mitochondrial protein thiols probably by a mechanism that involves S-nitrosylation of mitochondrial protein thiols.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyunsaturated fatty acids (PUFA) are essential structural components of the central nervous system. Their role in controlling learning and memory has been well documented. A nutrigenomic approach with high-density microarrays was used to reveal brain gene-expression changes in response to different PUFA-enriched diets in rats. In aged rats fed throughout life with PUFA-enriched diets, genes with altered expressions included transthyretin, α-synuclein, and calmodulins, which play important roles in synaptic  plasticity and learning. The effect of perinatal omega-3 PUFA supply on gene expression later in life also was studied. Several genes showed similar changes in expression in rats fed omega-3-deficient diets in the perinatal period, regardless of whether they or their mothers were fed omega-3 PUFA-sufficient diets after giving birth. In this experiment, among the down-regulated genes were a kainate glutamate receptor and a DEAD-box polypeptide. Among the up-regulated genes were a chemokine-like factor, a tumor necrosis factor receptor, and cytochrome c. The possible involvement of the genes with altered expression attributable to different diets in different brain regions in young and aged rats and the possible mode of regulatory action of PUFA also are discussed. We conclude that PUFA-enriched diets lead to significant changes in expression of several genes in the central nervous tissue, and these effects appear to be mainly independent of their effects on membrane composition. The direct effects of PUFA on transcriptional modulators, the downstream developmentally and tissue-specifically activated elements might be one of the clues to understanding the beneficial effects of the omega-3 PUFA on the nervous system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nucleotide variation in a portion of the mitochondrial cytochrome c oxidase subunit1 (cox1) gene from asexual stages of bucephalids of southern Australian scallops (Chlamys asperrima, Chlamys bifrons and Pecten fumatus) was investigated using a mutation scanning–sequencing approach. Single-strand conformation polymorphism (SSCP) analysis revealed three main profile types (A, B and C) for parasites isolated from scallops. Sequence analysis revealed that samples represented by profiles B and C had a high degree (97.3%) of sequence similarity, whereas they were ~21% different in sequence from those represented by profile A. These findings suggested that at least two types or species (represented by profile A, or profile B or C) of bucephalid infect scallops, of which both were detected in South Australia, while only one was found in Victoria. The prevalence of bucephalids (and their SSCP haplotypes) appeared to differ among the three species of scallop in South Australia as well as between the two scallop species in Victoria, indicating a degree of host specificity. Adult bucephalids were collected from Eastern Australian Salmon (Arripis trutta), in an attempt to match them with the asexual stages from the scallop hosts. Neither of the two taxa of adult bucephalid (Telorhynchus arripidis and an un-named Telorhynchus species) shared SSCP profiles with the bucephalids from scallops, but were genetically similar, suggesting that the asexual stages from scallops may represent the genus Telorhynchus. This study, which assessed nucleotide sequence variation in a portion of the mitochondrial cox1 gene for bucephalids found in scallops and arripid fish, illustrates the usefulness of the mutation scanning approach to elucidate complex life-cycles of marine parasites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Five new species and a new genus of gall midge are described from flower galls on native chenopod plants in Eyre Peninsula, South Australia. Asphondylia vesicaria sp. n. induces galls on Atriplex vesicaria; A. mcneilli sp. n. on Sclerolaena diacantha; and A. tonsura sp. n. on Enchylaena tomentosa. Infested flowers develop into galls and produce no seeds. DNA analysis of part of the cytochrome-c oxidase subunit I mitochondrial gene supported the morphological and biological differences between each of the new species and the previously described A. floriformis (Veenstra-Quah & Kolesik) and A. sarcocorniae (Veenstra-Quah & Kolesik) that induce galls on leaves and branches, respectively, of Sarcocornia quinqueflora (Chenopodiaceae) in Australian salt marshes. A new genus, Dactylasioptera gen. n. and two new species of Lasiopterini, D. adentata sp. n. and D. dentata sp. n. are described – both were reared from galls of A. mcneilli and A. tonsura.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective:
Nutrition during critical periods in early life may increase the subsequent risk of obesity, hypertension and metabolic diseases in adulthood. Few studies have focused on the long-term consequences of poor nutrition during the suckling period on the susceptibility to developing obesity when exposed to a palatable cafeteria-style high-fat diet (CD) after weaning.

Design:
This study examined the impact of early undernutrition, followed by CD exposure, on blood pressure, hormones and genes important for insulin sensitivity and metabolism and skeletal muscle mRNA expression of adiponectin receptor 1 (AdipoR1), carnitine palmitoyl-transferase I (CPT-1), cytochrome c oxidase 4 (COX4) and peroxisome proliferator-activated receptor alpha (PPARalpha). Following normal gestation, Sprague–Dawley rat litters were adjusted to 18 (undernourished) or 12 (control) pups. Rats were weaned (day 21) onto either palatable CD or standard chow.

Results:
Early undernourished rats were significantly lighter than control by 17 days, persisting into adulthood only when animals were fed chow after weaning. Regardless of litter size, rats fed CD had doubled fat mass at 15 weeks of age, and significant elevations in plasma leptin, insulin and adiponectin. Importantly, undernutrition confined to the suckling period, elevated circulating adiponectin regardless of post-weaning diet. Blood pressure was reduced in early undernourished rats fed chow, and increased by CD. Early undernutrition was associated with long-term elevations in the expression of AdipoR1, CPT-1, COX4 and PPARalpha in skeletal muscle.

Conclusion:
This study demonstrates the important role of early nutrition on body weight and metabolism, suggesting early undernourishment enhances insulin sensitivity and fatty-acid oxidation. The long-term potential benefit of limiting nutrition in the early postnatal period warrants further investigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The earthworm Eisenia fetida's benzo [a] pyrene (BaP) exposure experiments were carried out in artificial soil according to ISO 11268-1:1993. And then the upregulated and downregulated subtractive cDNA libraries were constructed by Clontech PCR-Select cDNA Subtration Kit. From the BaP exposure upregulated subtractive cDNA library, several cDNA segments matched mitochondrion-encoded genes were found, including cytochrome c oxidase subunit I (CO I), subunit II (CO II), subunit Ill (CO III), NADH dehydrogenase subunit 1 (NDH1), and ATP synthase subunit 6. The result indicated BaP and the subsequent oxidative stress disturbed the expression of mitochondrion-encoded genes, and this was potential biomarker for oxidative stress following xenobiotic exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitric oxide is a potential regulator of mitochondrial biogenesis. Therefore, we investigated if mice deficient in endothelial nitric oxide synthase (eNOS-/-) or neuronal NOS (nNOS-/-) have attenuated activation of skeletal muscle mitochondrial biogenesis in response to exercise. eNOS-/-, nNOS-/- and C57Bl6 (CON) mice (16.3 ± 0.2 weeks old) either remained in their cages (basal) or ran on a treadmill (16 m min-1, 5 grade) for 60 min (n = 8 per group) and were killed 6 h after exercise. Other eNOS-/-, nNOS-/- and CON mice exercise trained for 9 days (60 min per day) and were killed 24 h after the last bout of exercise training. eNOS-/- mice had significantly higher nNOS protein and nNOS-/- mice had significantly higher eNOS protein in the EDL, but not the soleus. The basal mitochondrial biogenesis markers NRF1, NRF2α and mtTFA mRNA were significantly (P< 0.05) higher in the soleus and EDL of nNOS-/- mice whilst basal citrate synthase activity was higher in the soleus and basal PGC-1α mRNA higher in the EDL. Also, eNOS-/- mice had significantly higher basal citrate synthase activity in the soleus but not the EDL. Acute exercise increased (P< 0.05) PGC-1α mRNA in soleus and EDL and NRF2α mRNA in the EDL to a similar extent in all genotypes. In addition, short-term exercise training significantly increased cytochrome c protein in all genotypes (P< 0.05) in the EDL. In conclusion, eNOS and nNOS are differentially involved in the basal regulation of mitochondrial biogenesis in skeletal muscle but are not critical for exercise-induced increases in mitochondrial biogenesis in skeletal muscle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to determine whether nitric oxide synthase (NOS) inhibition decreased basal and exercise-induced skeletal muscle mitochondrial biogenesis. Male Sprague-Dawley rats were assigned to one of four treatment groups: NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME, ingested for 2 days in drinking water, 1 mg/ml) followed by acute exercise, no L-NAME ingestion and acute exercise, rest plus L-NAME, and rest without L-NAME. The exercised rats ran on a treadmill for 53 ± 2 min and were then killed 4 h later. NOS inhibition significantly (P < 0.05; main effect) decreased basal peroxisome proliferator-activated receptor-{gamma} coactivator 1beta (PGC-1beta) mRNA levels and tended (P = 0.08) to decrease mtTFA mRNA levels in the soleus, but not the extensor digitorum longus (EDL) muscle. This coincided with significantly reduced basal levels of cytochrome c oxidase (COX) I and COX IV mRNA, COX IV protein and COX enzyme activity following NOS inhibition in the soleus, but not the EDL muscle. NOS inhibition had no effect on citrate synthase or beta-hydroxyacyl CoA dehydrogenase activity, or cytochrome c protein abundance in the soleus or EDL. NOS inhibition did not reduce the exercise-induced increase in peroxisome proliferator-activated receptor-{gamma} coactivator 1{alpha} (PGC-1{alpha}) mRNA in the soleus or EDL. In conclusion, inhibition of NOS appears to decrease some aspects of the mitochondrial respiratory chain in the soleus under basal conditions, but does not attenuate exercise-induced mitochondrial biogenesis in the soleus or in the EDL.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: To investigate the effects of globular adiponectin (gAd) on gene expression and whether these effects are mediated through 3',5'-cyclic monophosphate-activated protein kinase in skeletal muscle myotubes obtained from lean, obese and obese diabetic individuals.

Methods: Rectus abdominus muscle biopsies were obtained from surgical patients to establish primary skeletal muscle cell cultures. Three distinct primary cell culture groups were established (lean, obese and obese diabetic; n = 7 in each group). Once differentiated, these cultures were then exposed to gAd or 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 6 h.

Results: Stimulation with gAd decreased pyruvate dehydrogenase kinase 4 (PDK4) gene expression in the obese and diabetic samples (p ≤ 0.05) and increased cytochrome c oxidase (COX) subunit 4 (COXIV) gene expression in the myotubes derived from lean individuals only (p < 0.05). AICAR treatment also decreased PDK4 gene expression in the obese- and diabetic-derived myotubes (p ≤ 0.05) and increased the gene expression of the mitochondrial gene, COXIII, in the lean-derived samples only (p < 0.05).

Conclusions: This study demonstrated distinct disparity between myotubes derived from lean compared with obese and obese diabetic individuals following gAd and AICAR treatment. Further understanding of the regulation of PDK4 in obese and diabetic skeletal muscle and its interaction with adiponectin signalling is required as this appears to be an important early molecular event in these disease states that may improve blood glucose control and metabolic flux.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a family of biocompatible ionic liquids (ILs) which are able to dissolve significant amounts of proteins such as cytochrome c and in which ATR-FTIR spectroscopy results show retention of secondary structure to extreme temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foetal growth restriction impairs skeletal muscle development and adult muscle mitochondrial biogenesis. We hypothesized that key genes involved in muscle development and mitochondrial biogenesis would be altered following uteroplacental insufficiency in rat pups, and improving postnatal nutrition by cross-fostering would ameliorate these deficits. Bilateral uterine vessel ligation (Restricted) or sham (Control) surgery was performed on day 18 of gestation. Males and females were investigated at day 20 of gestation (E20), 1 (PN1), 7 (PN7) and 35 (PN35) days postnatally. A separate cohort of Control and Restricted pups were cross-fostered onto a different Control or Restricted mother and examined at PN7. In both sexes, peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), cytochrome c oxidase subunits 3 and 4 (COX III and IV) and myogenic regulatory factor 4 expression increased from late gestation to postnatal life, whereas mitochondrial transcription factor A, myogenic differentiation 1 (MyoD), myogenin and insulin-like growth factor I (IGF-I) decreased. Foetal growth restriction increased MyoD mRNA in females at PN7, whereas in males IGF-I mRNA was higher at E20 and PN1. Cross-fostering Restricted pups onto a Control mother significantly increased COX III mRNA in males and COX IV mRNA in both sexes above controls with little effect on other genes. Developmental age appears to be a major factor regulating skeletal muscle mitochondrial and developmental genes, with growth restriction and cross-fostering having only subtle effects. It therefore appears that reductions in adult mitochondrial biogenesis markers likely develop after weaning.