20 resultados para Crust of neutron stars

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P < 0.001), while pSRF protein levels increased similarly by 48% with both CONC and ECC exercise (P < 0.001). Prolonged ECC and CONC training equally stimulated muscle hypertrophy and produced increases in MRTF-A protein of 125% and 99%, respectively (P < 0.001). No changes occurred for total SRF protein. There was no effect of whey protein supplementation. These results show that resistance exercise provides an acute stimulation of the STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The striated muscle activator of Rho signaling (STARS) protein and members of its downstream signaling pathway, including myocardin-related transcription factor-A (MRTF-A) and SRF, are increased in response to prolonged resistance exercise training but also following a single bout of endurance cycling. The aim of the present study was to measure and compare the regulation of STARS, MRTF-A and SRF mRNA and protein following 10 weeks of endurance training (ET) versus resistance training (RT), as well as before and following a single bout of endurance (EE) versus resistance exercise (RE). Following prolonged training, STARS, MRTF-A and SRF mRNA levels were all increased by similar magnitude, irrespective of training type. In the training-habituated state, STARS mRNA increased following a single-bout RE when measured 2.5 and 5 h post-exercise and had returned to resting level by 22 h following exercise. MRTF-A and SRF mRNA levels were decreased by 2.5, 5, and 22 h following a single bout of RE and EE exercise when compared to their respective basal levels, with no significant difference seen between the groups at any of the time points. No changes in protein levels were observed following the two modes of exercise training or a single bout of exercise. This study demonstrates that the stress signals elicited by ET and RT result in a comparable regulation of members of the STARS pathway. In contrast, a single bout of EE and RE, performed in the trained state, elicit different responses. These observations suggest that in the trained state, the acute regulation of the STARS pathway following EE or RE may be responsible for exercise-specific muscle adaptations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ferromagnetic shape memory alloy of Ni48Mn30Ga22 prepared by induction melting was successfully hot forged. Strong textures and a large anisotropy of in plane plastic flow were developed during the hot forging process. The crystal structures, both in austenitic and martensitic states, were investigated by means of neutron powder diffraction technique. The result suggests that Ni48Mn30Ga22 has a cubic L21 Heusler structure at room temperature, the same as that in the stoichiometric Ni2MnGa. When cooled to 243 K, the Ni48Mn30Ga22 alloy changes into a seven layered orthorhombic martensitic structure. No substantial change of the neutron diffraction pattern was observed upon further cooling to 19 K, indicating that there is no intermartensitic transformation in the investigated alloy, which is different from the transformation processes in the Ni–Mn–Ga alloys with higher martensitic transformation temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exhibition,"Azimuth", looks at earth and space in a series of visually spectaculor works by the two artists. Daniel Armstrong’s series of digital photographs are heavily manipulated grids of astronomical images sampled from the night sky with time exposures of a number of seconds using both analog and digital recording equipment. These grids are reconfigurations of those stars that impose such presence on one’s visual nocturnal experience of regional Victoria. James McArdle's photographs deal with the human sensations of being on the ground, in the landscape.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fertilisation kinetics theory suggests that, when sperm are limiting, the larger eggs of broadcast-spawning marine organisms ought to be fertilised more frequently than smaller eggs, because they provide a bigger target for searching sperm. Whilst this effect has been demonstrated within species, it is not known if this pattern holds among species. We tested whether a large difference in egg size between congeneric seastars with contrasting planktotrophic and lecithotrophic modes of development results in differences in the likelihood of eggs being fertilised in sperm-limiting situations. Measurement of egg sizes and sperm swimming speeds led to the prediction that the sperm–egg collision rate constant for Patiriella calcar (420-µm-diameter egg) should be nine times greater than for P. regularis (140-µm-diameter egg). Although the eggs of P. calcar should be fertilised at greater rates in low sperm concentrations, they were not. When gametes were allowed to mix for 10 s, the hypothesis that P. calcar eggs required less sperm than P. regularis to ensure 50% of eggs were fertilised was rejected. When gametes were mixed for 5 min, P. regularis eggs were more frequently fertilised, but the difference was not statistically significant. We conclude there must be a difference between these species in the likelihood that when a sperm finds a conspecific egg it can successfully fertilise. This apparent uncoupling of egg size and likelihood of fertilisation suggests that fertilisation is not a major constraint on the evolution of egg size in these seastars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In situ neutron diffraction and Elasto-Plastic Self-Consistent (EPSC) polycrystal modelling have been employed to investigate which deformation mechanisms are involved in the plasticity of extruded AZ31 Mg alloy during the tensile loading along the extrusion direction. On the basis of this study we were able to determine the relative activity of the slip and twinning deformation modes. By tuning the parameters of the EPSC model (i.e. the critical resolved shear strengths and hardening parameters), excellent agreement with the experimental data has been achieved. It is shown that the strain in the crystallographic ⟨c ⟩direction is accommodated mainly by ⟨c + a ⟩ dislocation slip on second-order pyramidal planes. The results further indicate that either slip of ⟨a ⟩dislocations occurs on {10.1} pyramidal planes or cross-slip from basal and prismatic planes takes place.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Skeletal muscle atrophy is a severe consequence of ageing, neurological disorders and chronic disease. Identifying the intracellular signalling pathways controlling changes in skeletal muscle size and function is vital for the future development of potential therapeutic interventions. Striated activator of Rho signalling (STARS), an actin-binding protein, has been implicated in rodent cardiac hypertrophy; however its role in human skeletal muscle has not been determined. This study aimed to establish if STARS, as well as its downstream signalling targets, RhoA, myocardin-related transcription factors A and B (MRTF-A/B) and serum response factor (SRF), were increased and decreased respectively, in human quadriceps muscle biopsies taken after 8 weeks of both hypertrophy-stimulating resistance training and atrophy-stimulating de-training. The mRNA levels of the SRF target genes involved in muscle structure, function and growth, such as α-actin, myosin heavy chain IIa (MHCIIa) and insulin-like growth factor-1 (IGF-1), were also measured. Following resistance training, STARS, MRTF-A, MRTF-B, SRF, α-actin, MHCIIa and IGF-1 mRNA, as well as RhoA and nuclear SRF protein levels were all significantly increased by between 1.25- and 3.6-fold. Following the de-training period all measured targets, except for RhoA, which remained elevated, returned to base-line. Our results show that the STARS signalling pathway is responsive to changes in skeletal muscle loading and appears to play a role in both human skeletal muscle hypertrophy and atrophy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present work in situ neutron diffraction and acoustic emission were used concurrently to study deformation twinning in two ZM20 Mg alloys with significantly different grain sizes at room temperature. The combination of these techniques allows differentionation between the twin nucleation and the twin growth mechanisms. It is shown, that yielding and immediate post-yielding plasticity in compression is governed primarily by twin nucleation, whereas the plasticity at higher strains is governed by twin growth. The current results further suggest that yielding by twinning happens in a slightly different manner in the fine-grained as compared to the coarse-grained alloy.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exercise improves the ability of skeletal muscle to metabolise fats and sugars. For these improvements to occur the muscle detects a signal caused by exercise, resulting in changes in genes and proteins that control metabolism. We show that endurance exercise increases the amount of a protein called striated muscle activator of Rho signalling (STARS) as well as several other proteins influenced by STARS.We also show that the amount of STARS can be increased by signals directed from proteins called peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) and oestrogen-related receptor-α (ERRα). We also observed that when we reduce the amount of STARS in muscle cells, we block the ability of PGC-1α/ERRα to increase a gene called carnitine palmitoyltransferase-1β (CPT-1β), which is important for fat metabolism. Our study has shown that the STARS pathway is regulated by endurance exercise. STARS may also play a role in fat metabolism in muscle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Healthy living throughout the lifespan requires continual growth and repair of cardiac, smooth, and skeletal muscle. To effectively maintain these processes muscle cells detect extracellular stress signals and efficiently transmit them to activate appropriate intracellular transcriptional programs. The striated muscle activator of Rho signaling (STARS) protein, also known as Myocyte Stress-1 (MS1) protein and Actin-binding Rho-activating protein (ABRA) is highly enriched in cardiac, skeletal, and smooth muscle. STARS binds actin, co-localizes to the sarcomere and is able to stabilize the actin cytoskeleton. By regulating actin polymerization, STARS also controls an intracellular signaling cascade that stimulates the serum response factor (SRF) transcriptional pathway; a pathway controlling genes involved in muscle cell proliferation, differentiation, and growth. Understanding the activation, transcriptional control and biological roles of STARS in cardiac, smooth, and skeletal muscle, will improve our understanding of physiological and pathophysiological muscle development and function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

STARS is a muscle specific protein that is upregulated in response to endurance exercise and may potentially increase skeletal muscle cell sensitivity to muscle contraction. STARS enhances the activation of intracellular signalling pathways involved in skeletal muscle growth, regeneration and oxidative metabolism.