16 resultados para Cross-flow

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

There has been a growing interest in the industrial application of ultrasound, especially in the food industry. Power ultrasound can have a number of physical effects; it can increase turbulence through both the introduction of vibrational energy and through acoustic streaming, it can cause both particle agglomeration and particle dispersion and clean surfaces with a scouring action. Our work in this area has focused on the use of ultrasound to enhance membrane processing. Low frequency ultrasound has been used to facilitate cross flow ultrafiltration of dairy whey solutions for both during the ultrafiltration production cycle and the cleaning cycle. During the production cycle, the use of ultrasound reduces both pore blockage and the specific resistance of the fouling cake layer. This leads to higher flux rates and the potential for longer production cycles. During the cleaning cycle, ultrasound systematically increases cleaning efficiency, thus has the potential to reduce both total chemical consumption and system downtime. There was no deterioration in cleaning effectiveness or membrane condition which imples that sonication , has not damaged the membrane itself. Similarly, there was no change in the chemical nature of soluble proteins following sonication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low frequency ultrasound has been used to facilitate cross-flow ultrafiltration of dairy whey solutions. Experimental results show that ultrasonic irradiation at low power levels can significantly enhance the permeate flux with an enhancement factor of between 1.2 and 1.7. The use of turbulence promoters (spacers) in combination with ultrasound can lead to a doubling in the permeate flux. The application of a combined pore blockage/cake resistance model to the observed experimental data suggests that the use of ultrasound acts to lower the compressibility of both the initial protein deposit and the growing cake. Conversely, the pore blockage parameter is not significantly affected. The use of a gel polarization model shows that the ultrasonic irradiation increases the mass transfer coefficient within the concentration polarization layer. Electron microscopy results showed no evidence that the ultrasonic irradiation altered the membrane integrity. HPLC analysis of the whey proteins in the feed solution before and after sonication showed that the concentration profile of the whey proteins was also not affected by the sonication process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flat sheet polymeric UF membranes of 30000 MWCO were obtained from Millipore Inc. Polypropylene spacers of a 50 mil (1.3 mm) thickness were obtained from KOCH membrane systems. A single 30 cm^sup 2^ membrane sheet was sandwiched with a spacer on the feed side of a cross flow Minitan S unit (Millipore Inc). The unit was immersed in a 50 kHz ultrasonic bath that was switched on as required. All experiments used re-constituted spray-dried whey powder to foul the membrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates and compares the performance of two different types of ultrafiltration (UF) membranes in the recovery of water from secondary treated wastewater. Filtration experiments were carried out on a pilot scale cross-flow unit using synthetic wastewater similar to the quality of secondary treated wastewater by varying the operating parameters such as transmembrane pressure (TMP), feed composition and membrane configuration. The filtration experiments demonstrated that the flux recovery through spiral polymeric UF membrane was more sensitive to the variation in TMP compared to the tubular ceramic UF membrane over the range of TMP studied. The resistance in series model was used for the evaluation of the resistance to the permeate flux. The fouling resistance, particularly irreversible resistance compared to reversible resistance plays a major role in the total resistance for the tubular ceramic membrane. In contrast clean membrane resistance is the major contributor for the total resistance of the spiral polymeric membrane. Finally, the effectiveness of the filtration treatment was determined by evaluating the rejection coefficients for various pollution indices of the wastewater. Significant differences in the performance of the membrane types were observed which are likely to impact on the selection, operation and maintenance of the membrane system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Forward Osmosis (FO) can be applied to recover water from the pre-treatment sludge of seawater reverse osmosis process. This study investigated the effect of the concentration of two draw solutions (MgCl2 and NaCl) in the reduction of Fe(OH)3 sludge volume and the effect of cross flow velocity on flux through FO membrane. Higher the concentration of NaCl and MgCl2 higher the water flux observed. However, the percentage increase was not significant due to the occurrence of internal concentration polarisation. MgCl2 draws marginally increased water flux than NaCl, when the conditions of feed and draw solutions were similar. Increase in cross flow velocity (from 0.25 to 1.0 m/s) marginally changed the flux with both draw solutions as higher cross flow velocities were unproductive to beat the external CP effect along the membrane surface. However, at 1 m/s, highest fluxes were obtained for both draw solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advanced treatment of secondary wastewater generally has been achieved using polymeric microfiltration and ultrafiltration membranes. Newly developed ceramic membranes offer distinctive advantages over the currently employed membranes and were recently introduced for the purpose. This paper presents results of a pilot study designed to investigate the application of ceramic microfiltration (MF) and ultrafiltration (UF) membranes in the recovery of water from secondary wastewater. Synthetic wastewater similar to the quality of secondary treated wastewater was fed to ceramic MF and UF system in a cross-flow mode. The filtration experiments revealed that the flux recovery through tubular ceramic MF membrane was more sensitive to the variation in TMP compared with the tubular ceramic UF membrane over the range of TMP studied. The resistance in series model was used for the evaluation of the resistance to the permeate flux. The results revealed that for ceramic UF membrane, the contribution to the total resistance of fouling was higher than the inherent of the clean membrane resistance. However, both the clean membrane resistance and the fouling resistance contribute equally in the case of MF membrane. Various wastewater indices were measured to evaluate the effectiveness of the filtration treatment. The ceramic UF membrane consistently met water quality in the permeate in terms of colour, turbidity, chemical oxygen demand and absorbance, suggesting that the permeate water could be made to be reused or recycled for suitable purposes. However, MF membrane appeared to be incompetent with respect to the removal of colour. The unified membrane fouling index (UMFI) was used to measure the fouling potential of both the membranes. The result showed that for UF membrane, the value of UMFI is one order of magnitude higher than MF membrane. The overall results suggest that there were significant differences in the performance of both the ceramic UF and MF membranes that are likely to impact on the operation and maintenance of the membrane system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biofilm formation on membranes during water desalination operation and pre-treatments limits performance and causes premature membrane degradation. Here, we apply a novel surface modification technique to incorporate anti-microbial metal particles into the outer layer of four types of commercial polymeric membranes by cold spray. The particles are anchored on the membrane surface by partial embedment within the polymer matrix. Although clear differences in particle surface loadings and response to the cold spray were shown by SEM, the hybrid micro-filtration and ultra-filtration membranes were found to exhibit excellent anti-bacterial properties. Poly(sulfone) ultra-filtration membranes were used as for cross-flow filtration of Escherichia coli bacteria solutions to investigate the impact of the cold spray on the material[U+05F3]s integrity. The membranes were characterized by SEM-EDS, FT-IR and TGA and challenged in filtration tests. No bacteria passed through the membrane and filtrate water quality was good, indicating the membranes remained intact. No intact bacteria were found on hybrid membranes, loaded with up to 15. wt% silver, indicating the treatment was lysing bacteria on contact. However, permeation of the hybrid membranes was found to be reduced compared to control non-modified poly(sulfone) membranes due to the presence of the particles across the membrane material. The implementation of cold spray technology for the modification of commercial membrane products could lead to significant operational savings in the field of desalination and water pre-treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ongoing advances in computational performance and numerics have led to computational fluid dynamics (CFD) becoming a ubiquitous modelling tool. However, CFD methods have only been adopted to simulate pressure-driven membrane filtration systems relatively recently. This paper reviews various approaches to describing the behaviour of these systems using CFD, beginning with the hydrodynamics of membrane channels, including discussion of laminar, turbulent, and transition flow regimes, with reference to the effects of osmotic pressure, concentration polarisation, and cake formation. The use of CFD in describing mass transfer through the membrane itself is then discussed, followed by some concluding comments on commercial membrane simulation packages and future research directions in membrane CFD. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A semianalytical Sachs-type equation for the flow stress of magnesium-base alloys is developed using the Schmid law, power law hardening, and a sigmoidal increase in the twinning volume fraction with strain. Average Schmid factors were estimated from electron backscattered diffraction (EBSD) data. With these, the equation provides a reasonable description of the flow curves obtained in compression and tension for samples of Mg-3Al-1Zn cut in different orientations from rolled plate. The model illustrates the general importance of basal slip and twinning in magnesium alloys. The significance of prismatic slip in room temperature tension testing is also highlighted. This is supported with EBSD slip line trace analysis and rationalized in terms of a possible sensitivity of the critical resolved shear stress for prismatic (cross) slip to the stress on the basal plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple continuous flow wet-spinning method to achieve mechanical reinforcement of the two oppositely charged biopolymers chitosan and gellan gum is described. The mechanical properties of these biopolymers are influenced by the order of addition. Using a facile method for mechanical reinforcement of gellan gum/chitosan fibers resulted in increases in Young's modulus, tensile strength, and toughness. Spinning gellan gum into chitosan resulted in the strongest fibers. We show that our fibers can provide a mechanical alternative for bio-fibers without the need of cross-linking. It is demonstrated that the fibers become ionically conducting in the presence of water vapor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show how in-line Raman spectroscopy can be used to monitor both reactant and product concentrations for a heterogeneously catalysed Suzuki cross reaction operating in continuous flow. The flow system consisted of an HPLC pump to drive a homogeneous mixture of the reactants (4-bromobenzonitrile, phenylboronic acid, and potassium carbonate) through an oven heated (80°C) palladium catalyst immobilised on a silica monolith. A custom built PTFE in-line flow cell with a quartz window enabled the coupling of an Ocean Optics Raman spectrometer probe to monitor both the reactants and product (4-cyanobiphenyl). Calibration was based on obtaining multivariate spectral data in the range 1530 cm–1 and 1640 cm–1 and using partial least-squares regression (PLSR) to obtain a calibration model which was validated using gas chromatography–mass spectrometry (GCMS) analysis. In-line Raman monitoring of the reactant and product concentrations enable (i) determination of reaction kinetic information such as the empirical rate law and associated rate constant and (ii) optimisation of either the product conversion (61 % at 0.02 mL min–1 generating 17 g h–1) or product yield (14 % at 0.24 mL min–1 generating 53 g h–1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the increasing body of research that examines students' reasoning on socioscientific issues, we consider in particular student reasoning concerning acute, open-ended questions that bring out the complexities and uncertainties embedded in ill-structured problems. In this paper, we propose a socioscientific sustainability reasoning (S3R) model to analyze students' reasoning exchanges on environmental socially acute questions (ESAQs). The paper describes the development of an epistemological analysis of how sustainability perspectives can be integrated into socioscientific reasoning, which emphasizes the need for S3R to be both grounded in context and collective. We argue the complexity of ESAQs requires a consideration of multiple dimensions that form the basis of our S3R analysis model: problematization, interactions, knowledge, uncertainties, values, and governance. For each dimension, in the model we have identified indicators of four levels of complexity. We investigated the usefulness of the model in identifying improvements in reasoning that flow from cross-national web-based exchanges between groups of French and Australian students, concerning a local and a global ESAQ. The S3R model successfully captured the nature of reasoning about socioscientific sustainability issues, with the collective negotiation of multiple forms of knowledge as a key characteristic in improving reasoning levels. The paper provides examples of collaborative argumentation in collective texts (wikis) to illustrate the various levels of reasoning in each dimension, and diagrammatic representation of the evolution of collective reflections. We observe that a staged process of construction and confrontation, involving groups representing to some extent different cultural and contextual stances, is powerful in eliciting reasoned argument of enhanced quality. © 2014 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose the hypothesis that cash flow and cash flow volatility predict returns. We categorize firms listed on the New York Stock Exchange into sectors, and apply tests for both in-sample and out-of-sample predictability. While we find strong evidence that cash flow volatility predicts returns for all sectors, the evidence obtained when using cash flow as a predictor is relatively weak. Estimated profits and utility gains also suggest that it is cash flow volatility that is more relevant as a source of information than cash flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract
This paper aims to investigate the effect of cash flow and free cash flow on corporate failure in the emerging market in particular Jordan using two samples; matched sample and a cross sectional time-series (panel data) sample representative of 167 Jordanian companies in 1989-2003. LOGIT models are used to outline the relationship between firms’ financial health and the probability of default. Our results show that there is firm’s free cash flow increases corporate failure. The result also shows that the firm’s cash flow decreases corporate failure. Firms’ capital structures are fund a mental in predicting default. Capital structure is seen as the main factor affecting the probability of default as it affects a firm’s ability to access external sources of funds. Jordanian firms depend on short-term debt for both short and long term financing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Physical activity reduces cardiovascular mortality and morbidity. The World Health Organisation (WHO) recommends children engage in 60 min daily moderate-to-vigorous physical activity (MVPA). The effect of compliance with this recommendation on childhood cardiovascular risk has not been empirically tested. To evaluate whether achieving recommendations results in reduced composite-cardiovascular risk score (CCVR) in children, and to examine if vigorous PA (VPA) has independent risk-reduction effects.

METHODS: PA was measured using accelerometry in 182 children (9-11 years). Subjects were grouped according to achievement of 60 min daily MVPA (active) or not (inactive). CCVR was calculated (sum of z-scores: DXA body fat %, blood pressure, VO2peak, flow mediated dilation, left ventricular diastolic function; CVR score ≥ 1SD indicated 'higher risk'). The cohort was further split into quintiles for VPA and odds ratios (OR) calculated for each quintile.

RESULTS: Active children (92 (53 boys)) undertook more MVPA (38 ± 11 min, P < 0.001), had greater VO2peak (4.5 ± 0.8 ml/kg/min P < 0.001), and lower fat % (3.9 ± 1.1 %, P < 0.001) than inactive. No difference were observed between active and inactive for CCVR or OR (P > 0.05). CCVR in the lowest VPA quintile was significantly greater than the highest quintile (3.9 ± 0.6, P < 0.05), and the OR was 4.7 times higher.

CONCLUSION: Achievement of current guidelines has positive effects on body composition and cardiorespiratory fitness, but not CCVR. Vigorous physical activity appears to have beneficial effects on CVD risk, independent of moderate PA, implying a more prescriptive approach may be needed for future VPA guidelines.