31 resultados para CpGV resistance baculovirus whole genome sequencing

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a comprehensive protocol for extracting DNA from egg membranes and other internal debris recovered from the interior of blown museum bird eggs. A variety of commercially available DNA extraction methods were found to be applicable. DNA sequencing of polymerase chain reaction (PCR) products for a 176-bp fragment of mitochondrial DNA was successful for most egg samples (> 78%) even though the amount of DNA extracted (mean = 14.71 ± 4.55 ng/µL) was significantly less than that obtained for bird skin samples (mean = 67.88 ± 4.77 ng/µL). For PCR and sequencing of snipe (Gallinago) DNA, we provide eight new primers for the ‘DNA barcode’ region of COI mtDNA. In various combinations, the primers target a range of PCR products sized from 72 bp to the full ‘barcode’ of 751 bp. Not all possible combinations were tested with archive snipe DNA, but we found a significantly better success rate of PCR amplification for a shorter 176-bp target compared with a larger 288-bp fragment (67% vs. 39%). Finally, we explored the feasibility of whole genome amplification (WGA) for extending the use of archive DNA in PCR and sequencing applications. Of two WGA approaches, a PCR-based method was found to be able to amplify whole genomic DNA from archive skins and eggs from museum bird collections. After WGA, significantly more archive egg samples produced visible PCR products on agarose (56.9% before WGA vs. 79.0% after WGA). However, overall sequencing success did not improve significantly (78.8% compared with 83.0%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In some types of unicellular algae, the chloroplasts have their own nucleus — a legacy of the time when the chloroplast was a free-living cell. The sequence of the genome in one such nucleus is now revealed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The large scale whole-genome sequencing projects have resulted in large numbers of un-characterized and un-annotated protein sequences. This presents an opportunity and a challenge to characterise these novel protein sequences. Structural biology has become a widely accepted methodology to help assign functions to such proteins, complementing other cellular and biochemical studies. However, most of these studies require the target protein to be produced in large quantities and in a highly pure and soluble state. The present study is an attempt to maximise production of a recombinant mouse macrophage protein (rMMP) over-expressed heterologously in Escherichia coli. Highest production of biomass and total protein (6.6 mg mL-1) was observed at 37 °C. Maximum cell disruption (89%) was observed during freeze-thawing and subsequent ultrasonication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological sequence assembly is an essential step for sequencing the genomes of organisms. Sequence assembly is very computing intensive especially for the large-scale sequence assembly. Parallel computing is an effective way to reduce the computing time and support the assembly for large amount of biological fragments. Euler sequence assembly algorithm is an innovative algorithm proposed recently. The advantage of this algorithm is that its computing complexity is polynomial and it provides a better solution to the notorious “repeat” problem. This paper introduces the parallelization of the Euler sequence assembly algorithm. All the Genome fragments generated by whole genome shotgun (WGS) will be assembled as a whole rather than dividing them into groups which may incurs errors due to the inaccurate group partition. The implemented system can be run on supercomputers, network of workstations or even network of PC computers. The experimental results have demonstrated the performance of our system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmodiophora brassicae is a protistan pathogen that attacks roots of brassicaceous plant species causing devastating disease. Resistance is characterised by restriction of the pathogen and susceptibility by the development of severely malformed roots (‘clubroots’) and stunting of the plant that is associated with alterations in the synthesis of cytokinin and auxin hormones. We are examining the susceptible response in Arabidopsis and whether suppression of key resistance factors by the pathogen contributes to susceptibility. The interaction is being studied using a number of approaches including microscopy of the infection process and development of the pathogen within roots and host gene expression analysis. Quantitative PCR was used to confirm the timing of infection of roots and showed that infection occurred at day four and colonisation increased thereafter to high levels by 23 days after inoculation by which time roots were showing systemic abnormalities. To investigate the basis of this compatible interaction we have conducted a time course experiment following infection of a susceptible ecotype of Arabidopsis (Col-0) to examine whole genome geneexpression changes in the host. Differential gene expression analysis of inoculated versus control roots showed that a higher number of genes had altered expression levels at day four compared to that at day seven and at day ten. At day four the expression levels of several genes known to be important for recognition and signal transduction in resistant interactions and genes involved in the biosynthesis of lignin, phenylpropanoids and ethylene were suppressed. Suppression by P. brassicae of specific plant defence responses appears to be a key component of susceptibility in this system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterized 15 polymorphic microsatellite loci identified from a Noisy Miner (Manorina melanocephala) blood sample using 454 whole genome shotgun sequencing. Levels of polymorphism were assessed using 15 Noisy Miners. The average number of alleles per locus was 5.1. These loci were then cross-amplified to assess their suitability in a single population of Bell Miners (M. melanophrys). Given the landscape level impact that these species are having on the health of vegetation and biodiversity of a range of vertebrates throughout much of south-eastern Australia, these primers will help identify colony dispersal patterns and thus aid in modeling predictions of miner presence and tenure length in threatened ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human genome sequencing has enabled the association of phenotypes with genetic loci, but our ability to effectively translate this data to the clinic has not kept pace. Over the past 60 years, pharmaceutical companies have successfully demonstrated the safety and efficacy of over 1,200 novel therapeutic drugs via costly clinical studies. While this process must continue, better use can be made of the existing valuable data. In silico tools such as candidate gene prediction systems allow rapid identification of disease genes by identifying the most probable candidate genes linked to genetic markers of the disease or phenotype under investigation. Integration of drug-target data with candidate gene prediction systems can identify novel phenotypes which may benefit from current therapeutics. Such a drug repositioning tool can save valuable time and money spent on preclinical studies and phase I clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
The use of small interfering RNA (siRNA) molecules in animals to achieve double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful method of sequence-specific gene knockdown. As DNA-based expression of short hairpin RNA (shRNA) for RNAi may offer some advantages over chemical and in vitro synthesised siRNA, a number of vectors for expression of shRNA have been developed. These often feature polymerase III (pol. III) promoters of either mouse or human origin.
Results
To develop a shRNA expression vector specifically for bovine RNAi applications, we identified and characterised a novel bovine U6 small nuclear RNA (snRNA) promoter from bovine sequence data. This promoter is the putative bovine homologue of the human U6-8 snRNA promoter, and features a number of functional sequence elements that are characteristic of these types of pol. III promoters. A PCR based cloning strategy was used to incorporate this promoter sequence into plasmid vectors along with shRNA sequences for RNAi. The promoter was then used to express shRNAs, which resulted in the efficient knockdown of an exogenous reporter gene and an endogenous bovine gene.
Conclusion
We have mined data from the bovine genome sequencing project to identify a functional bovine U6 promoter and used the promoter sequence to construct a shRNA expression vector. The use of this native bovine promoter in shRNA expression is an important component of our future development of RNAi therapeutic and transgenic applications in bovine species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlamydiae are important pathogens of humans, birds and a wide range of animals. They are a unique group of bacteria, characterized by their developmental cycle. Chlamydia has been difficult to study because of their obligate intracellular growth habit and lack of a genetic transformation system. However, the past 5 years has seen the full genome sequencing of seven strains of Chlamydia and a rapid expansion of genomic, transcriptomic (RT-PCR, microarray) and proteomic analysis of these pathogens. The Chlamydia Interactive Database (CIDB) described here is the first database of its type that holds genomic, RT-PCR, microarray and proteomics data sets that can be cross-queried by researchers for patterns in the data. Combining the data of many research groups into a single database and cross-querying from different perspectives should enhance our understanding of the complex cell biology of these pathogens. The database is available at: http://www3.it.deakin.edu.au:8080/CIDB/.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK) – Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP), Protein inhibitors against Stats (PIAS), and Suppressor of cytokine signaling (SOCS) proteins across a diverse range of organisms.

Results
Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components.

Conclusion
Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the discovery of microRNAs (miRNAs), different approaches have been developed to label, amplify and quantify miRNAs. The TaqMan(®) technology, provided by Applied Biosystems (ABIs), uses a stem-loop reverse transcription primer system to reverse transcribe the RNA and amplify the cDNA. This method is widely used to identify global differences between the expression of 100s of miRNAs across comparative samples. This technique also allows the quantification of the expression of targeted miRNAs to validate observations determined by whole-genome screening or to analyze few specific miRNAs on a large number of samples. Here, we describe the validation of a method published by ABIs on their web site allowing to reverse transcribe and pre-amplify multiple miRNAs and snoRNAs simultaneously. The validation of this protocol was performed on human muscle and plasma samples. Fast and cost efficient, this method achieves an easy and convenient way to screen a relatively large number of miRNAs in parallel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adverse drug reactions (ADRs) are a major public health concern and cause significant patient morbidity and mortality. Pharmacogenomics is the study of how genetic polymorphisms affect an individual’s response to pharmacotherapy at the level of a whole genome. This article updates our knowledge on how genetic polymorphisms of important genes alter the risk of ADR occurrence after an extensive literature search. To date, at least 244 pharmacogenes identified have been associated with ADRs of 176 clinically used drugs based on PharmGKB. At least 28 genes associated with the risk of ADRs have been listed by the Food and Drug Administration as pharmacogenomic biomarkers. With the availability of affordable and reliable testing tools, pharmacogenomics looks promising to predict, reduce, and minimize ADRs in selected populations.