24 resultados para Coral Reefs

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coral reefs face a crisis due to local and global anthropogenic stressors. A large proportion of the ~50% coral loss on the Great Barrier Reef has been attributed to outbreaks of the crown-of-thorns-seastar (COTS). A widely assumed cause of primary COTS outbreaks is increased larval survivorship due to higher food availability, linked with anthropogenic runoff . Our experiment using a range of algal food concentrations at three temperatures representing present day average and predicted future increases, demonstrated a strong influence of food concentration on development is modulated by temperature. A 2°C increase in temperature led to a 4.2–4.9 times (at Day 10) or 1.2–1.8 times (Day 17) increase in late development larvae. A model indicated that food was the main driver, but that temperature was an important modulator of development. For instance, at 5000 cells ml−1 food, a 2°C increase may shorten developmental time by 30% and may increase the probability of survival by 240%. The main contribution of temperature is to ‘push’ well-fed larvae faster to settlement. We conclude that warmer sea temperature is an important co-factor promoting COTS outbreaks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Population outbreaks of adult Acanthaster planci cause significant reductions in coral cover and reduce the resilience of coral reefs, but little is known about the behaviour and food preference of juvenile A. planci. In 2014, food preferences and feeding rates of recently settled (<1 year) juvenile A. planci were tested and determined at the National Sea Simulator facilities of the Australian Institute of Marine Science. Juveniles were offered eight species of coral (Acropora formosa, A. millepora, A. tenuis, Pavona cactus, Echinopora lamellosa, Pocillopora damicornis, Stylophora pistillata and Porites lutea), known to be either consumed or avoided by adult sea stars, in a multiple-choice and a no-choice experiment. In the multiple-choice experiment, a preference for A. tenuis was detected, while S. pistillata, E. lamellosa and P. lutea were avoided. The no-choice experiment showed that the avoidance of these species was not influenced by the presence of other coral species, the exception being E. lamellosa, which was only consumed when no other choice was offered. Interestingly, all juveniles consuming E. lamellosa died post-predation. The study suggests that as A. planci matures it feeds on a wider range of species, even those which would have been lethal to them if consumed as a juvenile.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are three key drivers of the biodiversity crisis: (1) the well known existing threats to biodiversity such as habitat loss, invasive pest species and resource exploitation; (2) direct effects of climate-change, such as on coastal and high elevation communities and coral reefs; and (3) the interaction between existing threats and climate-change. The third driver is set to accelerate the biodiversity crisis beyond the impacts of the first and second drivers in isolation. In this review we assess these interactions, and suggest the policy and management responses that are needed to minimise their impacts. Renewed management and policy action that address known threats to biodiversity could substantially diminish the impacts of future climate-change. An appropriate response to climate-change will include a reduction of land clearing, increased habitat restoration using indigenous species, a reduction in the number of exotic species transported between continents or between major regions of endemism, and a reduction in the unsustainable use of natural resources. Achieving these measures requires substantial reform of international, national and regional policy, and the development of new or more effective alliances between scientists, government agencies, non-government organisations and land managers. Furthermore, new management practices and policy are needed that consider shifts in the geographic range of species, and that are responsive to new information acquired from improved research and monitoring programs. The interactions of climate-change with existing threats to biodiversity have the potential to drive many species to extinction, but there is much that can be done now to reduce this risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subtropical reefs provide an important habitat for flora and fauna, and proper monitoring is required for conservation. Monitoring these exposed and submerged reefs is challenging and available resources are limited. Citizen science is increasing in momentum, as an applied research tool and in the variety of monitoring approaches adopted. This paper aims to demonstrate an ecological assessment and mapping approach that incorporates both top-down (volunteer marine scientists) and bottom-up (divers/community) engagement aspects of citizen science, applied at a subtropical reef at Point Lookout, Southeast Queensland, Australia. Marine scientists trained fifty citizen scientists in survey techniques that included mapping of habitat features, recording of substrate, fish and invertebrate composition, and quantifying impacts (e.g., occurrence of substrate damage, presence of litter). In 2014 these volunteers conducted four seasonal surveys along semi-permanent transects, at five sites, across three reefs. The project presented is a model on how citizen science can be conducted in a marine environment through collaboration of volunteer researchers, non-researchers and local marine authorities. Significant differences in coral and algal cover were observed among the three sites, while fluctuations in algal cover were also observed seasonally. Differences in fish assemblages were apparent among sites and seasons, with subtropical fish groups observed more commonly in colder seasons. The least physical damage occurred in the most exposed sites (Flat Rock) within the highly protected marine park zones. The broad range of data collected through this top-down/bottom-up approach to citizen science exemplifies the projects' value and application for identifying ecosystem trends or patterns. The results of the project support natural resource and marine park management, providing a valuable contribution to existing scientific knowledge and the conservation of local reefs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
Our understanding of the importance of transcriptional regulation for biological function is continuously improving. We still know, however, comparatively little about how environmentally induced stress affects gene expression in vertebrates, and the consistency of transcriptional stress responses to different types of environmental stress. In this study, we used a multi-stressor approach to identify components of a common stress response as well as components unique to different types of environmental stress. We exposed individuals of the coral reef fish Pomacentrus moluccensis to hypoxic, hyposmotic, cold and heat shock and measured the responses of approximately 16,000 genes in liver. We also compared winter and summer responses to heat shock to examine the capacity for such responses to vary with acclimation to different ambient temperatures.
Results
We identified a series of gene functions that were involved in all stress responses examined here, suggesting some common effects of stress on biological function. These common responses were achieved by the regulation of largely independent sets of genes; the responses of individual genes varied greatly across different stress types. In response to heat exposure over five days, a total of 324 gene loci were differentially expressed. Many heat-responsive genes had functions associated with protein turnover, metabolism, and the response to oxidative stress. We were also able to identify groups of co-regulated genes, the genes within which shared similar functions.
Conclusion
This is the first environmental genomic study to measure gene regulation in response to different environmental stressors in a natural population of a warm-adapted ectothermic vertebrate. We have shown that different types of environmental stress induce expression changes in genes with similar gene functions, but that the responses of individual genes vary between stress types. The functions of heat-responsive genes suggest that prolonged heat exposure leads to oxidative stress and protein damage, a challenge of the immune system, and the re-allocation of energy sources. This study hence offers insight into the effects of environmental stress on biological function and sheds light on the expected sensitivity of coral reef fishes to elevated temperatures in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coral reef fishes are expected to experience rising sea surface temperatures due to climate change. How well tropical reef fishes will respond to these increased temperatures and which genes are important in the response to elevated temperatures is not known. Microarray technology provides a powerful tool for gene discovery studies, but the development of microarrays for individual species can be expensive and time-consuming. In this study, we tested the suitability of a Danio rerio oligonucleotide microarray for application in a species with few genomic resources, the coral reef fish Pomacentrus moluccensis. Results from a comparative genomic hybridization experiment and direct sequence comparisons indicate that for most genes there is considerable sequence similarity between the two species, suggesting that the D. rerio array is useful for genomic studies of P. moluccensis. We employed this heterologous microarray approach to characterize the early transcriptional response to heat stress in P. moluccensis. A total of 111 gene loci, many of which are involved in protein processing, transcription, and cell growth, showed significant changes in transcript abundance following exposure to elevated temperatures. Changes in transcript abundance were validated for a selection of candidate genes using quantitative real-time polymerase chain reaction. This study demonstrates that heterologous microarrays can be successfully employed to study species for which specific microarrays have not yet been developed, and so have the potential to greatly enhance the utility of microarray technology to the field of environmental and functional genomics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-compatible, hermaphroditic marine invertebrates have the potential to self-fertilize in the absence of mates or under sperm-limited conditions, and outcross when sperm is available from a variety of males. Hence, many hermaphroditic marine invertebrates may have evolved mixed-mating systems that involve facultative self-fertilization. Such mixed-mating strategies are well documented for plants but have rarely been investigated in animals. Here, I use allozyme markers to make estimates of selfing from population surveys of reef slope and reef flat sites, and contrast this with direct estimates of selfing from progeny-array analysis, for the brooding coral Seriatopora hystrix. Consistent heterozygote deficits previously reported for S. hystrix suggests that inbreeding (including the extreme of selfing) may be common in this species. I detected significant levels of inbreeding within populations (FIS=0.48) and small but significant differentiation among all sites (FST=0.04). I detected no significant differentiation among habitats (FHT=0.009) though among site differentiation did occur within the reef slope habitat (FSH=0.06), but not within the reef flat habitat (FSH=0.015). My direct estimates of outcrossing for six colonies and their progeny from a single reef flat site revealed an intermediate value (tm (±s.d.)=0.53±0.20). Inbreeding coefficients calculated from progeny arrays (Fe=0.31) were similar to indirect estimates based on adult genotype frequencies for that site (FIS=0.38). This study confirms that the mating system of this brooding coral is potentially variable, with both outcrossing and selfing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the relationship between genotypic diversity, the mode of production of brooded larvae and disturbance in a range of reef habitats, in order to resolve the disparity between the reproductive mode and population structure reported for the brooding coral Pocillopora damicornis. Within 14 sites across six habitats, the ratio of the observed (G o) to the expected (G e) genotypic diversity ranged from 69 to 100% of that expected for random mating. At three other sites in two habitats the G o /G e ranged from 35 to 53%. Two of these sites were recently bleached, suggesting that asexual recruitment may be favoured after disturbance. Nevertheless, our data suggest that brooded larvae, from each of five habitats surveyed, were asexually produced. While clonal recruitment may be important in disturbed habitats, the lack of clonality detected, both in this and earlier surveys of 40 other sites, implies that a disturbance is normally insufficient to explain this species’ continued investment in clonal reproduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The system described in the part of the coral fossils collected from Xainza area, northern Lower Devonian Dahl East group. Wrinkles coral genera and 5 species (including a new species Hunanaxonia xizangensis sp nov.) And two undetermined species; bedplate coral-shaped coral 4 4 species, including two new species the (Pachycanalicula sparcula sp nov. Paraheliolites zakangensis sp nov.) these coral fossil discovery will help to further understanding of the Early Devonian corals fauna symbiotic combination, evolution, and coral paleobiogeographic flora.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consistent individual differences in behaviour, termed personality, are common in animal populations and can constrain their responses to ecological and environmental variation, such as temperature. Here, we show for the first time that normal within-daytime fluctuations in temperature of less than 3°C have large effects on personality for two species of juvenile coral reef fish in both observational and manipulative experiments. On average, individual scores on three personality traits (PTs), activity, boldness and aggressiveness, increased from 2.5- to sixfold as a function of temperature. However, whereas most individuals became more active, aggressive and bold across temperature contexts (were plastic), others did not; this changed the individual rank order across temperatures and thus altered personality. In addition, correlations between PTs were consistent across temperature contexts, e.g. fish that were active at a given temperature also tended to be both bold and aggressive. These results (i) highlight the importance of very carefully controlling for temperature when studying behavioural variation among and within individuals and (ii) suggest that individual differences in energy metabolism may contribute to animal personality, given that temperature has large direct effects on metabolic rates in ectotherms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contemporary studies of sea turtle diving behaviour are generally based upon sophisticated techniques such as the attachment of time depth recorders. However, if the risks of misinterpretation are to be minimized, it is essential that electronic data are analysed in the light of first-hand observations. To this aim, we set out to make observations of juvenile hawksbill turtles (Eretmochelys imbricata, Linnaeus, 1766) foraging and resting in a shallow water coral reef habitat around the granitic Seychelles (4°'S, 55°'E). Data were collected from six study sites characterized by a shallow reef plateau (<5 m) and a flat sandy area at the base of the reef face (<10 m). Observation data were categorized into the following behaviours: (1) stationary foraging; (2) active foraging; (3) resting; and (4) assisted resting. Central to this investigation was the development of a technique for accurately estimating the size of sea turtles in situ based upon previously tested techniques for reef fishes. This revealed that through calibration, the curved carapace length (CCL) of marine turtles can be consistently estimated to within 10 cm of their actual size. Although rudimentary, this has advantages for assessing the residency or absence of specific life history stages from particular environments. Indeed, our data supported previous claims that following the reproductive season, adult hawksbills in the region may move away from the nesting beaches to alternative foraging grounds whilst immature turtles (following the pelagic juvenile stage) may opt to reside in areas close to their natal beaches. With regards to habitat utilization, juvenile hawksbills displayed an alternating pattern of short, shallow foraging dives followed by deeper, longer resting dives. These findings are consistent with previous electronic studies of free-range diving in this species and suggest that the maximization of resting duration may be an important factor driving this behaviour.