4 resultados para Contrast ratio

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical resource- and the less studied ratio-dependent models of predator–prey relationships provide divergent predictions as to the sustained ecological effects of bottom-up forcing. While resource-dependent models, which consider only instantaneous prey density in modelling predator responses, predict community responses that are dependent on the number of trophic levels in a system, ratio-dependent models, which consider the number of prey per consumer, predict proportional increase in each level irrespective of chain length. The two models are only subtly different for systems with two or three trophic levels but in the case of four trophic levels, predict opposite effects of enrichment on primary producers. Despite the poor discriminatory power of tests of the models in systems with two or three trophic levels, field tests in estuarine and marine systems with four trophic levels have been notably absent. Sampling of phytoplankton, macroinvertebrates, invertebrate-feeding fishes, piscivorous fishes in Kooloonbung Creek, Hastings River estuary, eastern Australia, subject to over 20 years of sewage discharge, revealed increased abundances in all four trophic levels at the disturbed location relative to control sites. Increased abundance of phytoplankton at the disturbed site was counter to the predictions of resource-dependent models, which posit a reduction in the first trophic level in response to enrichment. By contrast, the increase in abundance of this first trophic level and the proportionality of increases in abundances of each of the four trophic groups to nitrogen loading provided strong support for ratio dependency. This first evidence of ratio dependence in an estuarine system with four trophic levels not only demonstrates the applicability of ecological theory which seeks to simplify the complexity of systems, but has implications for management. Although large nutrient inputs frequently induce mortality of invertebrates and fish, we have shown that smaller inputs may in fact enhance biomass of all trophic levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic Resonance images (MRI) do not only exhibit sparsity but their sparsity take a certain predictable shape which is common for all kinds of images. That region based localised sparsity can be used to de-noise MR images from random thermal noise. This paper present a simple framework to exploit sparsity of MR images for image de-noising. As, noise in MR images tends to change its shape based on contrast level and signal itself, the proposed method is independent of noise shape and type and it can be used in combination with other methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At two natural volcanic seeps in Papua New Guinea, the partial pressure of carbon dioxide (pCO2) in the seawater is consistent with projections for 2100. Here, the cover of massive scleractinian corals Porites spp. is twice as high at elevated compared with ambient pCO2, while that of branching corals such as Acropora millepora is greater than twofold reduced. To assess the underlying mechanisms for such community shifts under long-term exposure to elevated pCO2, biochemical parameters related to tissue biomass, energy storage, pigmentation, cell protection, and cell damage were compared between Porites spp. and A. millepora from control (mean pHtotal = 8.1, pCO2 = 323 µatm) and CO2 seep sites (mean pHtotal = 7.8, pCO2 = 803 µatm) each at two reefs. In Porites spp., only one of the biochemical parameters investigated (the ratio of photoprotective to light-harvesting pigments) responded to pCO2, while tissue biomass, total lipids, total proteins, and some pigments differed between the two reefs, possibly reflecting differences in food availability. Furthermore, some fatty acids showed pCO2 –reef interactions. In A. millepora, most pigments investigated were reduced at elevated pCO2, while other parameters (e.g. tissue biomass, total proteins, total lipids, protein carbonyls, some fatty acids and pigments) differed between reefs or showed pCO2–reef interactions. Tissue biomass, total lipids, and cell-protective capacities were distinctly higher in Porites spp. than in A. millepora, indicating higher resistance to environmental stress in massive Porites. However, our data suggest that important biochemical measures remain relatively unaffected in these two coral species in response to elevated pCO2 up to 800 µatm, with most responses being smaller than differences between species and locations, and also when compared with responses to other environmental stressors such as ocean warming.