2 resultados para Compressors.

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy crisis is one of the major obstacles for human development. There are on-going researches to overcome this for a sustainable environment and economy. Passive air cooling system of earth pipe cooling is seen as a viable energy efficient technology for hot and humid subtropical climates. It can be an attractive economical alternative to conventional cooling since there are no compressors or any habitual mechanical unit. It utilizes earth’s near constant underground temperature to cool air for residential, agricultural or industrial uses. This paper reports the thermal performance of earth pipe cooling technology for a hot and humid subtropical climatic zone in Queensland, Australia. A series of pipes buried underground were used in order to increase the cooling performance of the system. To measure the thermal performance, a thermal model was developed for the earth pipe cooling system and simulated using ANSYS Fluent. Data were collected from two modelled rooms built from shipping containers and installed at Central Queensland University, Rockhampton, Australia. The impact of air temperature and velocity on room cooling performance has also been assessed. A significant temperature reduction is seen in this study, which will save energy cost for thermal cooling in buildings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy crisis is one of the major problems facing the progress of human society. There are several energy-efficient technologies that can be applied to save energy and make a sustainable environment. Passive air cooling of earth pipe cooling technology is one of them to reduce the energy consumption for hot and humid subtropical climates. The technology works with a long buried pipe with one end for intake air and the other end for providing air cooled by soil to the desired space such as residential, agricultural, or industrial buildings. It can be an attractive economical alternative to conventional cooling since there are no compressors or any customary mechanical unit. This chapter reports the performance of a vertical earth pipe cooling system for a hot and humid subtropical climatic zone in Queensland, Australia. A series of buried pipes were installed in vertical arrangement in order to increase earth pipe cooling performance. To measure the performance of the system, a numerical model was developed and simulated using the CFD software Fluent in ANSYS 15.0. Data were collected from two modeled rooms built from two shipping containers and installed at the Sustainable Precinct at Central Queensland University, Rockhampton, Australia. The impact of air temperature and velocity on room cooling performance has also been assessed. A temperature reduction of 1.82 °C was observed in the room connected to the vertical earth pipe cooling system, which will save the energy cost for thermal cooling in buildings.