31 resultados para Community Ecology

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The tawny frogmouth is a nocturnal bird species endemic to Australia. While many species of wildlife worldwide experience detrimental outcomes from urbanization, this thesis demonstrates the resilience and adaptability of this unique species to landscape change by human beings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Urban ecosystems are expanding throughout the world, and urban ecology is attracting increasing research interest. Some authors have questioned the value of existing ecological theories for understanding the processes and consequences of urbanization.
2. In order to assess the applicability of metacommunity theory to urban systems, I evaluated three assumptions that underlie the theory – the effect of patch area, the effect of patch isolation, and species–environment relations – using data on assemblages of pond-breeding amphibians in the Greater Melbourne area of Australia. I also assessed the relative impact of habitat fragmentation, habitat isolation, and changes to habitat quality on these assemblages.
3. Poisson regression modelling provided support for an important increase in species richness with patch area (pond size) and a decrease in species richness with increasing patch isolation, as measured by surrounding road cover. Holding all other variables constant, species richness was predicted to be 2·8–5·5 times higher at the largest pond than at the smallest, while the most isolated pond was predicted to have 12–19% of the species richness of the least isolated pond. Thus, the data were consistent with the first two assumptions of metacommunity theory evaluated.
4. The quality of habitat at a pond was also important, with a predicted 44–56% decrease in the number of species detected at ponds with a surrounding vertical wall compared with those with a gently sloping bank. This demonstrates that environmental differences between habitat patches were also influencing amphibian assemblages, providing support for the species-sorting and/or mass-effect perspectives of metacommunity theory.
5. Without management intervention, urbanization may lead to a reduction in the number of amphibian species persisting in urban ponds, particularly where increasing isolation of ponds by roads and associated infrastructure reduces the probability of re-colonization following local extinction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: The world's climate will continue to change because of human influence. This is expected to affect health, mostly adversely. We need to compare the projected health effects in Australia arising from differing climate change scenarios to inform greenhouse gas emission (mitigation) policy.

Methods: We estimated health effects in Australia (heatwave mortality, dengue transmission regions) around 2100 under various greenhouse gas scenarios: "strong policy action" (efforts made now to reduce emissions) and "no policy action" (emissions continue at present high levels with no climate change-specific policies).

Results: Compared with no policy action, mitigation could reduce the number of deaths caused by hot temperatures among older Australians by 4,000–7,000 a year (range reflects likely population size at 2100). Under a scenario of "no action", the zone of potential transmission of dengue fever expands 1,800 kilometres (km) south, as far as Sydney. In contrast, by markedly constraining greenhouse gas emissions now, this southward extension could be limited to 600 km (to Rockhampton). The number of displaced people within the Asia-Pacific region could increase (by orders of magnitude) under the "no action" scenario because of adverse socioecological circumstances aggravated by climate change.

Conclusions: Additional health effects will accrue as a result of the projected climate change throughout this century, and individuals and health systems should be prepared for some level of adaptation. However, timely and strong policy action to reduce greenhouse gas emissions would diminish the extent and severity of estimated future health effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

 An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: a) rates of decline in ecosystem distribution; b) restricted distributions with continuing declines or threats; c) rates of environmental (abiotic) degradation; and d) rates of disruption to biotic processes. A fifth criterion, e) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world’s ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundamental ecological research is both intrinsically interesting and provides the basic knowledge required to answer applied questions of importance to the management of the natural world. The 100th anniversary of the British Ecological Society in 2013 is an opportune moment to reflect on the current status of ecology as a science and look forward to high-light priorities for future work. To do this, we identified 100 important questions of fundamental importance in pure ecology. We elicited questions from ecologists working across a wide range of systems and disciplines. The 754 questions submitted (listed in the online appendix) from 388 participants were narrowed down to the final 100 through a process of discussion, rewording and repeated rounds of voting. This was done during a two-day workshop and thereafter. The questions reflect many of the important current conceptual and technical pre-occupations of ecology. For example, many questions concerned the dynamics of environmental change and complex ecosystem interactions, as well as the interaction between ecology and evolution. The questions reveal a dynamic science with novel subfields emerging. For example, a group of questions was dedicated to disease and micro-organisms and another on human impacts and global change reflecting the emergence of new subdisciplines that would not have been foreseen a few decades ago. The list also contained a number of questions that have perplexed ecologists for decades and are still seen as crucial to answer, such as the link between population dynamics and life-history evolution. Synthesis. These 100 questions identified reflect the state of ecology today. Using them as an agenda for further research would lead to a substantial enhancement in understanding of the discipline, with practical relevance for the conservation of biodiversity and ecosystem function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research on the ecology of top predators - upper trophic level consumers that are relatively free from predation once they reach adult size - has provided regular contributions to general ecology and is a rapidly expanding and increasingly experimental, multidisciplinary and technological endeavour. Yet, an exponentially expanding literature coupled with rapid disintegration into specialized, disconnected subfields for study (e.g. vertebrate predators versus invertebrate predators, community ecology versus biological control etc.) increasingly means that we are losing a coherent, integrated understating of the role and importance of these species in ecosystems. This process of canalization is likely to hinder sharing of scientific discovery and continued progress, especially as there is a growing need to understand the generality of the top-down forcing, as demonstrated for some members of this group. Here, we propose ways to facilitate synthesis by promoting changes in mentality and awareness among specialists through increased debate and collaboration, conceptual reviews and a series of exemplary case studies. The strategy will rely on the collective contribution by all scientists in the field and will strive to consolidate and formalise top-order predation as a holistic, cohesive, cross-taxonomical field of research studying the ecology, evolution and behaviour of apex predators and their capability to exert top-down forcing on lower trophic levels. © 2014 The Authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Confronted with increasing anthropogenic change, conservation in the 21st century requires a sound understanding of how ecological systems change during disturbance. We highlight the benefits of recognizing two distinct components of change in an ecological unit (i.e., ecosystem, community, population): 'resistance', the ability to withstand disturbance; and 'resilience', the capacity to recover following disturbance. By adopting a 'resistance-resilience' framework, important insights for conservation can be gained into: (i) the key role of resistance in response to persistent disturbance, (ii) the intrinsic attributes of an ecological unit associated with resistance and resilience, (iii) the extrinsic environmental factors that influence resistance and resilience, (iv) mechanisms that confer resistance and resilience, (v) the post-disturbance status of an ecological unit, (vi) the nature of long-term ecological changes, and (vii) policy-relevant ways of communicating the ecological impacts of disturbance processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: To quantify bird responses to a large unplanned fire, taking into consideration landscape-level fire severity and extent, pre-fire site detection frequency and environmental gradients. Location: South-eastern Australia. Methods: A major wildfire in 2009 coincided with a long-term study of birds and provided a rare opportunity to quantify bird responses to wildfire. Using hierarchical Bayesian analysis, we modelled bird species richness and the detection frequency of individual species in response to a suite of explanatory variables, including (1) landscape-level fire severity and extent (2) pre-fire detection frequency, (3) site-level vegetation density and (4) environmental variables (e.g. elevation and topography). Results: Landscape-level fire severity had strong effects on bird species richness and the detection frequency of the majority of bird species. These effects varied markedly between species; most responded negatively to amount of severely burned forest in the landscape, one negatively to the amount of moderately burned forest and one responded negatively to the total area of burned forest. Only one species - the Flame Robin - responded positively to the amount of burned forest. Relationships with landscape-scale fire extent changed over time for one species - the Brown Thornbill - with initially depressed rates of detection recovering after just 2 years. The majority of species were significantly more likely to be detected in burned areas if they have been recorded there prior to the fire. Main conclusions: Birds responded strongly to the severity and spatial extent of fire. They also exhibited strong site fidelity even after severe wildfire which causes profound changes in vegetation cover - a response likely influenced by environmental features such as elevation and topography.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context: Edge effects due to habitat loss and fragmentation have pervasive impacts on many natural ecosystems worldwide. Objective: We aimed to explore whether, in tandem with the resource-based model of edge effects, species feeding-guild and flight-capacity can help explain species responses to an edge. Methods: We used a two-sided edge gradient that extended from 1000 m into native Eucalyptus forest to 316 m into an exotic pine plantation. We used generalised additive models to examine the continuous responses of beetle species, feeding-guild species richness and flight-capable group species richness to the edge gradient and environmental covariates. Results: Phytophagous species richness was directly related to variation in vegetation along the edge gradient. There were more flight-capable species in Eucalyptus forest and more flightless species in exotic pine plantation. Many individual species exhibited multiple-peaked edge-profiles. Conclusions: The resource based model for edge effects can be used in tandem with traits such as feeding-guild and flight-capacity to understand drivers of large scale edge responses. Some trait-groups can show generalisable responses that can be linked with drivers such as vegetation richness and habitat structure. Many trait-group responses, however, are less generalisable and not explained by easily measured habitat variables. Difficulties in linking traits with resources along the edge could be due to unmeasured variation and indirect effects. Some species’ responses reached the limits of the edge gradient demonstrating the need to examine edge effects at large scales, such as kilometres.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper will explore connections between the concepts of community development and ecology. Initially the tendency was to think there should be a total melding of the principles and practices of community development with those of an ecological understanding but on reflection this has not and indeed is not necessarily the case. The relative epistemological positioning of two different groups, one strongly associating with social justice and the need for people to be at the centre of our economic, environmental and social understanding; and the other clearly seeing the plant and ecology/environment being paramount. While there are a myriad of connections the focus of much community development has been around human welfare based on principles of social, political and economic justice. This has at times been to the detriment of ecological sustainability. Conversely ecology and particularly aspects of deep ecology have focussed on the 'other than human' aspects of the planet and at times seemed almost 'anti 'human and overlooking the need to work with the social almost entirely. This paper briefly outlines the historical separation of the social from the ecological then goes on to explore alternative understandings that bring together principles of community development and ecology. Three examples are used to highlight the principles and practices that are being used across diverse contexts but all informed by common norms and values that are consistent with both community development and ecology. Concepts such as subsidiarity, participation and empowerment that form the basis of community development praxis are critical to the development of local sustainability. The combination of these aspects is evidenced in the three examples. Each is very clearly located in the local context and is built on sound ecological and community development understandings but each is also well aware that the need for a broader perspective is imperative to achieving global goals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The papers consider such questions as how to build community resilience in the context of profound environmental threat, how to ensure sustainability through community processes and how to assess community progress in responding to threats to the ecosystem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Box-Ironbark forests occur on the inland hills of the Great Dividing Range in Australia, from western Victoria to southern Queensland. These dry, open forests are characteristically dominated by Eucalyptus species such as Red Ironbark E. tricarpa, Mugga Ironbark E. sideroxylon and Grey Box E. microcarpa. Within these forests, several Eucalyptus species are a major source of nectar for the blossom-feeding birds and marsupials that form a distinctive component of the fauna. In Victoria, approximately 83% of the original pre - European forests of the Box-Ironbark region have been cleared, and the remaining fragmented forests have been heavily exploited for gold and timber. This exploitation has lead to a change in the structure of these forests, from one dominated by large 80-100 cm diameter, widely -spaced trees to mostly small (≥40 cm DBH), more densely - spaced trees. This thesis examines the flowering ecology of seven Eucalyptus species within a Box-Ironbark community. These species are characteristic of Victorian Box-Ironbark forests; River Red Gum E. camaldulensis, Yellow Gum E. leucoxylon, Red Stringybark E. macrorhyncha, Yellow Box E. melliodora, Grey Box E. microcarpa, Red Box E. polyanthemos and Red Ironbark E. tricarpa. Specifically, the topics examined in this thesis are: (1) the floral character traits of species, and the extent to which these traits can be associated with syndromes of bird or insect pollination; (2) the timing, frequency, duration, intensity, and synchrony of flowering of populations and individual trees; (3) the factors that may explain variation in flowering patterns of individual trees through examination of the relationships between flowering and tree-specific factors of individually marked trees; (4) the influence of tree size on the flowering patterns of individually marked trees, and (5) the spatial and temporal distribution of the floral resources of a dominant species, E. tricarpa. The results are discussed in relation to the evolutionary processes that may have lead to the flowering patterns, and the likely effects of these flowering patterns on blossom-feeding fauna of the Box-Ironbark region. Flowering observations were made for approximately 100 individually marked trees for each species (a total of 754 trees). The flower cover of each tree was assessed at a mean interval of 22 (+ 0.6) days for three years; 1997, 1998 and 1999. The seven species of eucalypt each had characteristic flowering seasons, the timing of which was similar each year. In particular, the timing of peak flowering intensity was consistent between years. Other spatial and temporal aspects of flowering patterns for each species, including the percentage of trees that flowered, frequency of flowering, intensity of flowering and duration of flowering, displayed significant variation between years, between forest stands (sites) and between individual trees within sites. All seven species displayed similar trends in flowering phenology over the study, such that 1997 was a relatively 'poor' flowering year, 1998 a 'good' year and 1999 an 'average' year in this study area. The floral character traits and flowering seasons of the seven Eucalyptus species suggest that each species has traits that can be broadly associated with particular pollinator types. Differences between species in floral traits were most apparent between 'summer' and 'winter' flowering species. Winter - flowering species displayed pollination syndromes associated with bird pollination and summer -flowering species displayed syndromes more associated with insect pollination. Winter - flowering E. tricarpa and E. leucoxylon flowers, for example, were significantly larger, and contained significantly greater volumes of nectar, than those of the summer flowering species, such as E. camaldulensis and E. melliodom. An examination of environmental and tree-specific factors was undertaken to investigate relationships between flowering patterns of individually marked trees of E. microcarpa and E. tricarpa and a range of measures that may influence the observed patterns. A positive association with tree-size was the most consistent explanatory variable for variation between trees in the frequency and intensity of flowering. Competition from near-neighbours, tree health and the number of shrubs within the canopy area were also explanatory variables. The relationship between tree size and flowering phenology was further examined by using the marked trees of all seven species, selected to represent five size-classes. Larger trees (≥40 cm DBH) flowered more frequently, more intensely, and for a greater duration than smaller trees. Larger trees provide more abundant floral resources than smaller trees because they have more flowers per unit area of canopy, they have larger canopies in which more flowers can be supported, and they provide a greater abundance of floral resources over the duration of the flowering season. Heterogeneity in the distribution of floral resources was further highlighted by the study of flowering patterns of E. tricarpa at several spatial and temporal scales. A total of approximately 5,500 trees of different size classes were sampled for flower cover along transects in major forest blocks at each of five sample dates. The abundance of flowers varied between forest blocks, between transects and among tree size - classes. Nectar volumes in flowers of E. tricarpa were sampled. The volume of nectar varied significantly among flowers, between trees, and between forest stands. Mean nectar volume per flower was similar on each sample date. The study of large numbers of individual trees for each of seven species was useful in obtaining quantitative data on flowering patterns of species' populations and individual trees. The timing of flowering for a species is likely to be a result of evolutionary selective forces tempered by environmental conditions. The seven species' populations showed a similar pattern in the frequency and intensity of flowering between years (e.g. 1998 was a 'good' year for most species) suggesting that there is some underlying environmental influence acting on these aspects of flowering. For individual trees, the timing of flowering may be influenced by tree-specific factors that affect the ability of each tree to access soil moisture and nutrients. In turn, local weather patterns, edaphic and biotic associations are likely to influence the available soil moisture. The relationships between the timing of flowering and environmental conditions are likely to be complex. There was no evidence that competition for pollinators has a strong selective influence on the timing of flowering. However, as there is year-round flowering in this community, particular types of pollinators may be differentiated along a temporal gradient (e.g. insects in summer, birds in winter). This type of differentiation may have resulted in the co-evolution of floral traits and pollinator types, with flowers displaying adaptations that match the morphologies and energy requirements of the most abundant pollinators in any particular season. Spatial variation in flowering patterns was evident at several levels. This is likely to occur because of variation in climate, weather patterns, soil types, degrees of disturbance and biotic associations, which vary across the Box-Ironbark region. There was no consistency among sites between years in flowering patterns suggesting that factors affecting flowering at this level are complex. Blossom-feeding animals are confronted with a highly spatially and temporally patchy resource. This patchiness has been increased with human exploitation of these forests leading to a much greater abundance of small trees and fewer large trees. Blossom-feeding birds are likely to respond to this variation in different ways, depending upon diet-breadth, mobility and morphological and behavioural characteristics. Future conservation of the blossom-feeding fauna of Box-Ironbark forests would benefit from the retention of a greater number of large trees, the protection and enhancement of existing remnants, and revegetation with key species, such as E. leucoxylon, E. microcarpa and E. tricarpa. The selective clearing of summer flowering species, which occur on the more fertile areas, may have negatively affected the year-round abundance and distribution of floral resources. The unpredictability of the spatial distribution of flowering patches within the region means that all remnants are likely to be important foraging areas in some years.