13 resultados para Combustion chambers

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intelligent energy management system (IEMS) is developed to improve fuel efficiency of an internal combustion engine vehicle. It helps determine the best approach to run the engine system through dynamically analysing various factors relating to vehicle. The energy balance technique is implemented and utilised. The simulation outcome of the IEMS is compared against that of a conventional system under the same driving factors. The results show that the IEMS reduces the fuel consumption around 5.6% for the tested conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable compression ratio enables an engine to achieve increased efficiency at part loads, where the majority of driving occurs, without sacrificing full load power requirements or increasing the risk of engine knock. Although over 100 patents and patent applications exist none of these systems has been commercialized yet due to issues related to feasibility, cost and frictional loss. A new approach of a self controlling variable compression ratio connecting rod is presented that does not need a friction intensive external activation and that could even be retrofitted. The potential in fuel consumption and exhaust emission reduction as well as increased power and torque output for this concept has been verified in combustion simulations utilizing the latest research results related to the dynamic heat transfer in the combustion chamber from Professor Kleinschmidt from the University of Siegen, Germany. The self controlling variable compression ratio connecting rod allows the con rod to compress at high load conditions thereby increasing cylinder volume to alleviate combustion pressures and temperatures and therefore limit knock onset. The biggest efficiency gains can be achieved at medium load where the reduction of heat loss during the compression of the connecting rod plays a major role additional to the well known efficiency gains of an increased compression ratio. The combustion simulation results shows fuel consumption can be reduced by between 3% and 5% during part load and wide open throttle operation at various engine speeds. Emissions are also reduced significantly; particularly NOx and CO emissions were reduced by up to 35%.The self controlling variable compression ratio connecting rod allows the con rod to compress at high load conditions thereby increasing cylinder volume to alleviate combustion pressures and temperatures and therefore limit knock onset. The biggest efficiency gains can be achieved at medium load where the reduction of heat loss during the compression of the connecting rod plays a major role additional to the well known efficiency gains of an increased compression ratio.The combustion simulation results shows fuel consumption can be reduced by between 3% and 5% during part load and wide open throttle operation at various engine speeds. Emissions are also reduced significantly; particularly NOx and CO emissions were reduced by up to 35%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that the gas–solid system plays a significant role in many industrial processes. It is a complex physical and chemical process, generally consisting of heat transfer, mass transfer, species diffusion, and chemical reactions. In this paper, the reaction of methane with air at a low air factor and the gas flow in a fluidized bed with 0.1 mm solid particles are computationally simulated to enable the study of the effect of the inert particles on the species diffusion and the chemical reactions. The reaction of methane and air is modeled by a two-step reaction mechanism that produces a continuous fluid phase composed of six gases (CH4, CO, O2, CO2, H2O, and N2) and discrete solid particles in the reactor. The simulation results are compared with experiment and show that the finite rate model and the eddy dissipation model can well describe the reactions of gases in high-density gas–solid systems. The distribution of each gas and the particle behaviors are analyzed for incomplete combustion at different concentrations of loaded solid particles. The inert particles change the reactions by enhancing both the chemical kinetics and the species diffusion dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discarded silicone products can be recycled to prepare superhydrophobic powder by simply burning and smashing. The powder can be used to fabricate a superhydrophobic surface with mechanical durability such that the superhydrophobicity was kept after 50 abrasion cycles. A robust electroconductive superhydrophobic surface can also be obtained by this simple method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denitrification is commonly measured using in situ benthic chambers or laboratory incubations of sediment cores. These techniques are similar in principle but differ considerably in cost and practicality. Despite widespread use of both techniques, it is uncertain whether they give comparable results. We compared cores and chambers for measuring fluxes (dissolved oxygen [DO], N 2, NH4+, NO3- and NO 2-) and denitrification efficiency at 2 sites in Port Phillip Bay, Victoria, Australia. Overall, denitrification efficiency was not significantly different between cores and chambers, but fluxes of DO, NO 3- and NO2- differed. Chambers demonstrated higher levels of oxygen consumption and net fluxes of NO 3- and NO2- out of the sediment, suggesting that denitrification and nitrification were closely coupled. In contrast, there was a greater relative importance for uncoupled denitrification in cores as indicated by reduced oxygen consumption and net fluxes of NO 3- into the sediment. We conclude that cores and chambers give different flux results and therefore are not comparable techniques for measuring denitrification. To ascertain the cause of this, we tested the hypothesis that cores failed to adequately incorporate the impacts of macrofauna on fluxes, due to the small size of cores relative to chambers. However, densities of macrofauna were not significantly different in cores and chambers. We then hypothesised that disturbance during core collection, transportation, and handling may account for differences, but cores deployed in situ and in the laboratory gave similar results. We suggest that compression of sediment during insertion of core cylinders into the sediment may account for differences between core and chamber fluxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging|allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.