3 resultados para Combinatorial analysis

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discovery of cis-regulatory elements in gene promoters is a highly challenging research issue in computational molecular biology. This paper presents a novel approach to searching putative cis-regulatory elements in human promoters by first finding 8-mer sequences of high statistical significance from gene promoters of humans, mice, and Drosophila melanogaster, respectively, and then identifying the most conserved ones across the three species (phylogenetic footprinting). In this study, a conservation analysis on both closely related species (humans and mice) and distantly related species (humans/mice and Drosophila) is conducted not only to examine more candidates but also to improve the prediction accuracy. We have found 124 putative cis-regulatory elements and grouped these into 20 clusters. The investigation on the coexistence of these clusters in human gene promoters reveals that SP1, EGR, and NRF-1 are the dominant clusters appearing in the combinatorial combination of up to five clusters. Gene Ontology (GO) analysis also shows that many GO categories of transcription factors binding to these cis-regulatory elements match the GO categories of genes whose promoters contain these elements. Compared with previous research, the contribution of this study lies not only in the finding of new cis-regulatory elements, but also in its pioneering exploration on the coexistence of discovered elements and the GO relationship between transcription factors and regulated genes. This exploration verifies the putative cis-regulatory elements that have been found from this study and also gives new insight on the regulation mechanisms of gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optimization problem arising in the analysis of controllability and stabilization of cycles in discrete time chaotic systems is considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feature selection is an important technique in dealing with application problems with large number of variables and limited training samples, such as image processing, combinatorial chemistry, and microarray analysis. Commonly employed feature selection strategies can be divided into filter and wrapper. In this study, we propose an embedded two-layer feature selection approach to combining the advantages of filter and wrapper algorithms while avoiding their drawbacks. The hybrid algorithm, called GAEF (Genetic Algorithm with embedded filter), divides the feature selection process into two stages. In the first stage, Genetic Algorithm (GA) is employed to pre-select features while in the second stage a filter selector is used to further identify a small feature subset for accurate sample classification. Three benchmark microarray datasets are used to evaluate the proposed algorithm. The experimental results suggest that this embedded two-layer feature selection strategy is able to improve the stability of the selection results as well as the sample classification accuracy.