89 resultados para Cold-formed Steel structures

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon fiber reinforced polymer (CFRP) is found to be an effective material for the retrofitting of both reinforced concrete (RC) and steel structures. However, retrofitting such structures using CFRP alone is shown to exhibit a premature failure due to early de-bonding of the CFRP laminates from the hosting sur-faces. On the other hand, steel plates are also used separately for the steel and RC structures. However, steel plates usually add the self-weight to the structures whereas CFRP is known for its high strength to weight ra-tio. In the present study, the advantages of both steel plates and CFRP is used to form a hybrid retrofitting sys-tem that is able to withstand the existing load to prevent the failure of the structures. In order to improve the retrofitting efficiency of a steel-concrete composite structures, an experimental investigation is carried out to examine the use of effectiveness of CFRP-steel hybrid retrofitting system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of a steel strip rolling process is to produce high quality steel at a desired thickness.  Thickness reduction is the result of the speed difference between the incoming and the outgoing steel strip and the application of the large normal forces via the backup and the work rolls.  Gauge control of a cold rolled steel strip is achieved using the gaugemeter principle that works adequately for the input gauge changes and the strip hardness changes.  However, the compensation of some factors is problematic, for example, eccentricity of the backup rolls.  This cyclic eccentricity effect causes a gauge deviation, but more importantly, a signal is passed to the gap position control so to increase the eccentricity deviation.  Consequently, the required high product tolerances are severely limited by the presence of the roll eccentricity effects.
In this paper a direct model reference adaptive control (MRAC) scheme with dynamically constructed neural controller was used.  The aim here is to find the simplest controller structure capable of achieving an optimal performance.  The stability of the adaptive neural control scheme (i.e. the requirement of persistency of excitation and bounded learning rates) is addressed by using as the inputs to the reference model the plant's state variables.  In such a case, excitation is due to actual plant signals (states) affected by plant disturbances and noise.  In addition, a reference model in the form of a filter with a desired transfer function using Modulus Optimum design was used to ensure variance in the desired dynamic characteristics of the system.  The gradually decreasing learning rate employed by the neural controller in this paper is aimed at eliminating controller instability resulting from over-aggressive control.  The moving target problem (i.e. the difficulty of global neural networks to perfrom several separate computational tasks in closed -loop control) is addressed by the localized architecture of the controller.  The above control scheme and learning algorithm offers a method for automatic discovery of an efficient controller.
The resulting neural controller produces an excellent disturbance rejection in both cases of eccentricity and hardness disturbances, reducing the gauge deviation due to eccentricity disturbance from 33.36% to 4.57% on average, and the gauge deviation due to hardness disturbance from 12.59% to 2.08%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the high requirements of civil infrastructures against the earthquake in Japan, a great number of research organizations have been conducting the structural steel experiments, in particular the seismic tests such as the cyclic loading test and the pseudo-dynamic test, for many years to determine the seismic performances of steel structures. However, the original test data gained by most research organizations are not well stored in an appropriate manner for distribution and possible usage of others. Although a Numerical Database of Steel Structures (NDSS) was developed some years ago to preserve and share experimental data of the ultimate strength tests acquired at Nagoya University, it was not easy to access this database from other computer platform due to the lack of the support of proper communication media. With the rapid development of information networks and their browsers, structural engineers and researchers are able to exchange various types of test data through Internet. This paper presents the development of a distributed collaborative database system for structural steel experiments. The database is made available on the World-Wide Web, and the Java language enables the interactive retrieval efficiently. The applications of the developed database system for the retrieval of experimental data and seismic numerical analysis are validated in the form of examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focussed on how tubular steel structures similar to that in frontal car frames deform under crash conditions. The novelty comes from finding three crash modes: axial crush, transitional and global bending. Each mode was categorised by reaction force and energy absorption, this allowing for better structural design practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural condition monitoring methods can be generally classified as local and global. While the global method needs only a small number of sensors to measure the low-frequency structural vibration properties, the acquired information is often not sufficiently sensitive to minor damages in a structure. Local methods, on the other hand, could be very sensitive to minor damages but their detection range is usually small. To overcome the drawbacks and take advantage of both methods, an integrated condition monitoring system has been recently developed for structural damage detection, which combines guided wave and structural vibration tests. This study aims at finding a viable damage identification method for steel structures by using this system. First, a spectral element modelling method is developed, which can simulate both wave propagation and structural vibration properties. Then the model is used in updating analysis to identify crack damage. Extensive numerical simulations and model updating works are conducted. The experimental and numerical results suggest that simply combining the objective functions cannot provide better structural damage identification. A two-stage damage identification scheme is more suitable for identifying damage in steel beams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT
This paper addresses the strain ageing effects on the mechanical properties of the partially damaged structural mild steel. Since repairing partly damaged structures may not occur immediately, the strain ageing effect can significantly influence the structural behaviour. The changes due to this effect have not so far been considered in the civil engineering design guidelines. In order to investigate strain ageing effects, two-stage experimental tests are carried out on the mild-steel specimens. In the first stage, partial damage is made using quasi-static loading. During the second stage, the strength and ductility of the specimens are examined after 2 and 7 days ‘ageing’ at room temperature and the results are compared with the corresponding no-age samples. The microstructure of the specimens is examined using scanning electron microscopy (SEM). To illustrate the effect of strain ageing on the global behaviour of steel structures, a numerical example is provided in which strain ageing impacts on loading capacity and deflection of a steel beam. Finally, the stress–strain relation of partially damaged mild-steel material incorporating strain ageing effects is expressed by calibrating the parameters of Ramberg–Osgood model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On a quiet Sunday afternoon in January 2015, a 12 year old girl was assaulted in Geelong’s Market Square mall. The attack sparked a media furore over what should be done to address the ongoing safety and amenity issues of this intractable public space. The city’s mayor, Cr Darryn Lyons, responded to the situation by declaring the mall a ‘haunt for bogans and scumbags’ and renewed calls for its demolition. Such rhetoric highlights the exclusionary mindset that casts certain types of people as undesirable inhabitants of public spaces. It also bolsters negative public perceptions of the mall. Once formed, such attitudes are difficult to shift, despite an overall improvement in the area’s crime rates over recent years. Poor perceptions are further reinforced by the soulless nature of the mall’s built fabric and weak urban interfaces. Its formal language is one of hostility, not only towards would-be delinquents, but to all people. The space is furnished with cold stainless steel seats, CCTV cameras and limp, pavement water spouts, while its inactive edges consist of loading bays, security grilles and neglected facades. This paper considers how a more inclusive architecture might be utilised to create a kinder, more generous physical environment that reflects the public nature of the space. While not a quick fix, fostering an architecture that encourages a more equitable use of the mall may diminish the sense of fear, anxiety and suspicion that the space currently elicits, tackling the problem at both a structural and social level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A great number of research organisations in Japan have been conducting structural steel experiments for many years, particularly seismic tests of steel structures like cyclic-loading and pseudo-dynamic tests, in order to determine their seismic performances. However, the original test data gained by most research organisations are not well stored in an appropriate manner for distribution and possible usage by others. With the rapid development of information networks, structural engineers and researchers are able to exchange various types of test data through the Internet. In this paper, the authors present the development of a distributed collaborative database system for structural steel experiments. The database is made available on the Internet, and the use of Java language enables efficient interactive retrieval. The potential applications of the developed database system for structural engineering education are validated for the retrieval of experimental data and seismic numerical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper the effect of grain refinement on the dynamic response of ultra fine-grained (UFG) structures for C–Mn and HSLA steels is investigated. A physically based flow stress model (Khan-Huang-Liang, KHL) was used to predict the mechanical response of steel structures over a wide range of strain rates and grain sizes. However, the comparison was restricted to the bcc ferrite structures. In previous work [K. Muszka, P.D. Hodgson, J. Majta, A physical based modeling approach for the dynamic behavior of ultra fine-grained structures, J. Mater. Process. Technol. 177 (2006) 456–460] it was shown that the KHL model has better accuracy for structures with a higher level of refinement (below 1 μm) compared to other flow stress models (e.g. Zerrili-Armstrong model). In the present paper, simulation results using the KHL model were compared with experiments. To provide a wide range of the experimental data, a complex thermomechanical processing was applied. The mechanical behavior of the steels was examined utilizing quasi-static tension and dynamic compression tests. The application of the different deformation histories enabled to obtain complex microstructure evolution that was reflected in the level of ferrite refinement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – Building upon the results of a critical review of previous studies, the purpose of this paper is to present a framework to enhance the reliability of the theoretical model for international benchmarking of labour productivity (TMIBLP) method for construction project activities. The next part of the paper presents the results of implementing the proposed framework for construction activities in the Iranian construction industry. Design/methodology/approach – This paper draws upon a critical review of the literature to highlight the drawbacks of the previous studies concerning implementing TMIBLP within the construction industry. Identifying these shortcomings, the authors propose a framework for construction projects, which presents the procedure for deploying TMIBLP for construction activities in a reliable manner. The final section of the paper demonstrates the empirical implementation of the proposed framework within the Iranian construction industry. Findings – The primary contributions of the paper include: identifying the drawbacks of previous studies within the construction context, the framework that would lead construction managers towards more reliable implementation of benchmarking for construction projects, and determining the baseline of erecting steel structures in a developing country. Practical implications – A practical implementation of the TMIBLP method was presented to address the lack of research in Iran and to show the feasibility of using the framework developed. The authors investigated the daily labour productivity for the activity of structural steel erection for six projects in Tehran in order to determine the values of the baseline productivity for each project. Accordingly, the disruption index, performance ratio and project management index as the project benchmarks were calculated for all six projects. Originality/value – Underlining the necessity of implementing methods such as TMIBLP, this study outlines the outcomes of the first study on the benchmarking of construction activities deploying the proposed framework and using the data on erecting steel structures from six construction projects in Iran. The discussions provide guidelines for construction project managers regarding benchmarking labour productivity. The paper concludes with suggestions for future research opportunities.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Shear bands formed during both cold and hot plastic deformation have been linked with several proposed mechanisms for the formation of ultrafine grains. The aim of the present work was to undertake a detailed investigation of the microstructural and crystallographic characteristics of the shear bands formed during hot deformation of a 22Cr-19Ni-3Mo (mass%) austenitic stainless steel and a Fe-30 mass%Ni based austenitic model alloy. These alloys were subjected to deformation in torsion and plane strain compression (PSC), respectively, at temperatures of 900°C and 950°C and strain rates of 0.7s-1 and 10s-1, respectively. Transmission electron microscopy and electron backscatter diffraction in conjunction with scanning electron microscopy were employed in the investigation. It has been observed that shear bands already started to form at moderate strains in a matrix of pre-existing microbands and were composed of fine, slightly elongated subgrains (fragments). These bands propagated along a similar macroscopic path and the subgrains, present within their substructure, were rotated relative to the surrounding matrix about axes approximately parallel to the sample radial and transverse directions for deformation in torsion and PSC, respectively. The subgrain boundaries were largely observed to be non-crystallographic, suggesting that the subgrains generally formed via multiple slip processes. Shear bands appeared to form through a co-operative nucleation of originally isolated subgrains that gradually interconnected with the others to form long, thin bands that subsequently thickened via the formation of new subgrains. The observed small dimensions of the subgrains present within shear bands and their large misorientations clearly indicate that these subgrains can serve as potent nucleation sites for the formation of ultrafine grain structures during both subsequent recrystallisation, as observed during the present PSC experiments, and phase transformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A plain carbon steel was deformed using a hot torsion deformation simulator. A schedule known to produce strain-induced ferrite was used with the strain interrupted for increasing intervals of time to determine the effect of an isothermal hold on the final microstructure. Microscopy and electron back-scattered diffraction (EBSD) were used to analyse the changes that occurred in the partially transformed microstructure during the hold and the subsequent applied strain. The strain-induced ferrite coarsened during the hold and this coarsened ferrite was refined during the second deformation. These results were compared to those obtained for a different plain carbon steel deformed in single pass rolling close to the Ar3 temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation of a favourable recrystallization texture in interstitial-free (IF) steels depends on the availability and activation of particular nucleation sites in the deformed microstructure. This paper presents a description of the deformed microstructure of a commercially cold-rolled IF steel, with particular emphasis on the microstructural inhomogeneities and short-range orientational variation that provide suitable nucleation sites during recrystallization. RD-fibre regions deform relatively homogeneously and exhibit little short-range orientational variation. ND-fibre regions are heavily banded and exhibit considerable short-range orientational variation associated with the bands. While the overall orientational spread of ND-fibre grains frequently is about the ND-axis, the short-range orientational variation often involves rotation about axes in the TD-ND plane that are nearer to the TD than the ND.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, wedge-shape samples were used to study the effect of strain induced transformation on the formation of ultrafine grained structures in steel by single pass rolling. The results showed two different transition strains for bainite formation and ultrafine ferrite (UFF) formation in the surface layer of strip at reductions of 40% and 70%, respectively, in a plain carbon steel. The bainitic microstructure formed by strain induced bainitic transformation during single pass rolling was also very fine. The evolution of UFF formation in the surface layer showed that ferrite coarsening is significantly reduced through strain induced transformation combined with rapid cooling in comparison with the centre of the strip. In the surface, the ferrite coarsening mostly occurred for intragranular nucleated grains (IG) rather than grain boundary (GB) ferrite grains. The results suggest that normal grain growth occurred during overall transformation in the GB ferrite grains. In the centre of the strip, there was significantly more coarsening of ferrite grains nucleated on the prior austenite grain boundaries.