4 resultados para Cognitive Radio

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the drawbacks of LEACH protocol is the uncontrolled selection of cluster heads which, in some rounds, leads to the concentration of them in a limited area due to the randomness of the selection procedure. LEACH-C is a variant of LEACH that uses a centralized clustering algorithm and forms good clusters through sink control. According to experimental results, the IEEE 802.15.4 packets are damaged by WLAN interferences in ISM band. It seems that, sensor nodes equipped with cognitive radio capabilities can overcome this problem. In cognitive radio sensor networks (CRSN), routing must be accompanied by channel allocation. This requires spectrum management which can be devolved to cluster heads. For this networks, new duty cycle mechanisms must be designed that jointly consider neighbor discovery, and spectrum sensing/allocation. Cluster-based network architecture is a good choice for effective dynamic spectrum management. In such architecture, cluster heads have a proper spatial distribution and are optimally located all over the network. In this paper, using the physical layer information and preserving the feature of random cluster head selection in LEACH, it has been tried to both move the position of cluster heads to appropriate locations and make their quantity optimal. The simulation results show that the transferal of cluster heads to appropriate locations increases the network lifetime significantly though this comes at the price of early instability appearance. By considering the energy level in cluster head election algorithm, one can overcome the network stability issues too. However, this will move the cluster heads away from their appropriate locations. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cognitive radio improves spectrum efficiency and mitigates spectrum scarcity by allowing cognitive users to opportunistically access idle chunks of the spectrum owned by licensed users. In long-term spectrum leasing markets, secondary network operators make a decision about how much spectrum is optimal to fulfill their users' data transmission requirements. We study this optimization problem in multiple channel scenarios. Under the constrains of expected user admission rate and quality of service, we model the secondary network into a dynamic data transportation system. In this system, the spectrum accesses of both primary users and secondary users are in accordance with stochastic processes, respectively. The main metrics of quality of service we are concerned with include user admission rate, average transmission delay and stability of the delay. To quantify the relationship between spectrum provisioning and quality of service, we propose an approximate analytical model. We use the model to estimate the lower and upper bounds of the optimal amount of the spectrum. The distance between the bounds is relatively narrow. In addition, we design a simple algorithm to compute the optimum by using the bounds. We conduct numerical simulations on a slotted multiple channel dynamic spectrum access network model. Simulation results demonstrate the preciseness of the proposed model. Our work sheds light on the design of game and auction based dynamic spectrum sharing mechanisms in cognitive radio networks.