18 resultados para Cochlear Implant

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the finite element modeling and comparison of the stress and strain analyses were carried out for three different structures that are intact bone, stemless implant and stemmed one. Currently proposed stemless design studied here is the generic concept of stemless implant. This generic stemless implant reconstruction was numerically compared to the conventional stemmed implant and also to the intact bone as control solution. Two loading conditions were applied to the most proximal part of the models, while the most distal part was fixed for all degrees of freedom. The models were divided into two regions and studied along two paths of medial and lateral aspect. The results of this study showed that the stemless implant had less deviation from the control solution of the bone in all regions and in both loading conditions, comparing to the large deviation of the stemmed implant from the intact bone. However, it was shown that the fixation of this type of implant and its effect on sub-trochanter region must be carefully considered for designing the final product of any specific design of stemless implant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results obtained from this work reveal that high porous titanium foams have fracture mechanical properties that meet and exceed the required properties of both cortical and cancellous bones. With their good biocompatibility, light weight, strong structural integrity and possibility of bone in-growth these foams are suitable for biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg–Zr–Ca alloys were developed for new biodegradable bone implant materials. The microstructure and mechanical property of the Mg–xZr–yCa [x=0·5, 1·0% and y=1·0, 2·0% (wt-% hereafter)] alloys were characterised by optical microscopy, compressive and hardness tests. The in vitro cytotoxicity of the alloys was assessed using osteoblast-like SaOS2 cells. The corrosion behaviour of these alloys was evaluated by soaking the alloys in simulated body fluid (SBF) and modified minimum essential medium (MMEM). Results indicated that the mechanical properties of the Mg–Zr–Ca are in the range of the mechanical properties of natural bone. The corrosion rate and biocompatibility decreases with the increase in the Ca content in the Mg–Zr–Ca alloys. The solutions of SBF and MMEM with the immersion of the Mg–Zr–Ca alloys show strong alkalisation. The Zr addition to the Mg–Zr–Ca alloys leads to an increase in the corrosion resistance, compressive strength and the ductility of the alloys, and a decrease in the elastic modulus of the Mg–Zr–Ca alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel Mg–Zr–Sr alloys have recently been developed for use as biodegradable implant materials. The Mg–Zr–Sr alloys were prepared by diluting Mg–Zr and Mg–Sr master alloys with pure Mg. The impact of Zr and Sr on the mechanical and biological properties has been thoroughly examined. The microstructures and mechanical properties of the alloys were characterized using optical microscopy, X-ray diffraction and compressive tests. The corrosion resistance was evaluated by electrochemical analysis and hydrogen evolution measurement. The in vitro biocompatibility was assessed using osteoblast-like SaOS2 cells and MTS and haemolysis tests. In vivo bone formation and biodegradability were studied in a rabbit model. The results indicated that both Zr and Sr are excellent candidates for Mg alloying elements in manufacturing biodegradable Mg alloy implants. Zr addition refined the grain size, improved the ductility, smoothed the grain boundaries and enhanced the corrosion resistance of Mg alloys. Sr addition led to an increase in compressive strength, better in vitro biocompatibility, and significantly higher bone formation in vivo. This study demonstrated that Mg–xZr–ySr alloys with x and y ⩽5 wt.% would make excellent biodegradable implant materials for load-bearing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Children with cochlear implants have been shown to have language skills on a par with children with severe hearing losses who have hearing aids. Earlier implants, bilateral implantation, and focused intervention programmes may result in some children with cochlear implants displaying similar language skills to their hearing peers. The development of pragmatic skills is central to communication competence and underpins the development of friendships. Although some studies of pragmatic skills in children with cochlear implants have been reported, most have used a contrived referential communication task rather than free conversation.

Method: This study investigated the conversational skills of 20 children with cochlear implants, aged between 9 and 12 years, in free conversation with their hearing peers. The pragmatic skills of these 20 deaf/hearing pairs or dyads were compared with the pragmatic skills of 20 hearing/hearing dyads. Pragmatic skills were analysed in terms of conversational balance, conversational turn types, and conversational maintenance. The impact of the participants’ level of speech intelligibility was also investigated.

Results: Children with cochlear implants tend to dominate conversations with their hearing peers. They initiated more topics, took longer turns, asked more questions, and tended to make more personal comments while their hearing friends tended to use more conversational devices and minimal answers. In contrast, pairs of matched hearing children were very balanced in all of these aspects of conversation. Speech intelligibility did not appear to impact consistently on the pragmatic skills of the children with cochlear implants but all children had a relatively high level of speech intelligibility.

Discussion: Rather than being characterized by frequent conversational breakdown as in older studies, children with cochlear implants had a strong grasp of basic conversational rules. They conversed in a similar way to some deaf adults who also have been shown to take control of the conversation. Findings are discussed for their implications for intervention and future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
Displaced and unstable proximal humeral fractures are challenging injuries to treat. Proximal humeral locking plates are a recent development for the treatment of these complex fractures.

Methods
Retrospective analysis of 23 patients with 23 proximal humeral fractures treated with the Synthes locking proximal humerus plate. These were Neer two-, three- and four-part fractures. Follow-up was at a mean of 22 months and included clinical assessment using the Constant score (CS) and the Short Form-12 health questionnaire. Radiographic assessment was performed to assess implant-related complication in relation to the initial fracture pattern and the presence of adequate medial support.

Results
The mean CS for all patients was 60.4 (range, 29–85). The mean adjusted CS was 82% (range, 30–117), active forward flexion 127 degrees and the active abduction 115 degrees. Initial fracture pattern, the presence or absence of adequate medial support and age did not significantly influence the clinical scores. Complications included one infection, two cases of avascular necrosis, two cases of varus collapse with screw penetration and one non-union. The overall reoperation rate was 26%. There was an increased rate of complications in those with inadequate medial support (P = 0.0183) and a trend to higher complication rates in four-part fractures.

Conclusion
Using the locking proximal humerus plate for the treatment of proximal humeral fractures is an acceptable procedure with comparable outcomes with historical controls, but with a complication rate of 30%. More important than implant selection, however, is the ability to achieve a stable reduction with calcar support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium-strontia (Ti-SrO) metal matrix composites (MMCs) with 0, 1, 3 and 5% (weight ratio) of SrO have been fabricated through the powder metallurgy method. Increasing the weight ratio of SrO from 0 to 5%, the compressive strength of Ti-SrO MMCs increased from 982 MPa to 1753 MPa, while the ultimate strain decreased from 0.28 to 0.05. The elastic moduli of Ti-3SrO and Ti-5SrO MMCs were higher than those of Ti and Ti-1SrO MMC samples. Additionally, the micro hardness of Ti-SrO MMCs was enhanced from 59% to 190% with the addition of SrO. The enhanced compression strength and micro hardness of Ti-SrO MMCs were attributed to the Hall-Petch effect and the SrO dispersion strengthening in the Ti matrix. MTS assay results demonstrated that Ti-SrO MMCs with 3% SrO exhibited enhanced proliferation of osteoblast-like cells. Alkaline phosphatase activity of cells was not influenced significantly on the surface of Ti-SrO MMCs compared with pure Ti in a term longer than 10 days. The cell morphology on the Ti-SrO MMCs was observed using confocal microscopy and scanning electron microscopy, which confirmed that the Ti-3%SrO MMCs showed optimal in vitro biocompatibility. This journal is © the Partner Organisations 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a series of Ti-xNb-yMo (x = 5-40 wt.% in 5 wt.% increments; and y = 3, 5, 10 wt%) alloys were fabricated by powder metallurgy and studied with respect to their microstructures, compressive mechanical properties and hardness. Increases in Nb and Mo content led to decreases in compressive and yield strengths, elastic modulus and hardness of the sintered alloys. Among the studied alloys, Ti-10Nb-3Mo alloy exhibited the optimum combination of strength and ductility. Alloys with a lower amount of Nb (≤ 25 wt.%) and Mo (≤ 5 wt.%) developed Widmanstätten structure, while further increase in Nb and Mo additions led to the microstructure predominantly consisting of β phase with varying regions of α + β phase. The effects of sintering temperature on elastic modulus and hardness were also investigated for Ti-xNb-3Mo alloys.