39 resultados para Cobalt-doping

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The detrimental effects of UV radiation are having a significant impact on our life and environment. The development of effective UV shielding agents is therefore of great importance to our society. ZnO nanoparticles are considered to be one of the most effective UV blocking agents. However, the development of ZnO-based UV shielding products is currently hindered due to the adverse effects of the inherent photocatalytic activity exhibited by ZnO. This paper reports our recent study on the possibility of reducing the photoactivity of ZnO nanoparticles via surface modification and impurity doping. It was found that the photoactivity was drastically reduced by SiO2-coatings that were applied to ZnO quantum dots using the Stöber method and a microemulsion technique. The effect of transition metal doping on the photoactivity was also studied using mechanochemical processing and a co-precipitation method. Cobalt doping reduced the photoactivity, while manganese doping led to mixed results, possibly due to the difference in the location of dopant ions derived from the difference in the synthesis methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bi doping of SrFeO3d results in the formation of a structure with high symmetry and extraordinary electrochemical performance for Bi0.5Sr0.5FeO3-d, which is capable of competing effectively with the current Co-based cathode benchmark with additional advantages of lower thermal expansion and cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many athletes report using a wide range of special sports foods and supplements. In the present study of 77 elite Australian swimmers, 99% of those surveyed reported the use of these special preparations, with 94% of swimmers reporting the use of non-food supplements. The most popular dietary supplements were vitamin or mineral supplements (used by 94% of the group), herbal preparations (61%), and creatine (31%). Eighty-seven percent of swimmers reported using a sports drink or other energy-providing sports food. In total, 207 different products were reported in this survey. Sports supplements, particularly supplements presented as pills or other non-food form, are poorly regulated in most countries, with little assurance of quality control. The risk of an inadvertent "positive doping test" through the use of sports supplements or sports foods is a small but real problem facing athletes who compete in events governed by anti-doping rules. The elite swimmers in this survey reported that information about the "doping safety" of supplements was important and should be funded by supplement manufacturers. Although it is challenging to provide such information, we suggest a model to provide an accredited testing program suitable for the Australian situation, with targeted athlete education about the "sports safety" of sports supplements and foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the impact of various regulatory policies on the decision to dope by athletes. The analysis suggests that punishment schemes involving lump-sum fines and bans, which are commonly used to control doping, create biases, and do not achieve their goal of levelling the playing field. Under plausible assumptions, these schemes are more likely to control doping for risk averse athletes compared to risk neutral ones, poorer athletes compared to their wealthier counterparts, and athletes with high earning potentials relative to those with lower potential. A marginal penalty scheme where athletes are fined based on the quantity of dope detected eliminates these biases, and emerges as a superior policy for levelling the playing field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The successful use of nanoparticulate ZnO in applications such as UV-screening agents or photocatalyst for the destruction of chemical waste requires the development of techniques for controlling its photocatalytic activity. In this study, we have investigated transition metal doping as a means of achieving this goal. Powders of ZnO, MnxZn1−xO, and CoxZn1−xO were synthesised by a three-stage process consisting of high-energy mechanical milling, heat treatment, and washing. The photocatalytic activity of these powders was evaluated using the spin-trapping technique with electron paramagnetic resonance spectroscopy. It was found that the photocatalytic activity of CoxZn1−xO progressively decreased with the doping level. In contrast, the activity of MnxZn1−xO initially increased with doping up to a level of 2 mol% and thereafter declined. These results demonstrate that doping with transition metal oxides can be used to tailor the photocatalytic properties of nanoparticulate ZnO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we have investigated the effect of doping with cobalt and manganese oxide on the photocatalytic activity of nanoparticulate zinc oxide. Zinc oxide powders with controlled particle size, minimal agglomeration, and controlled chemical composition were manufactured by mechanochemical processing. The photocatalytic activity of the powders was measured using the spin trapping technique with electron paramagnetic resonance spectroscopy. It was found that the addition of cobalt oxide decreased the yield of photogenerated hydroxyl radicals. In contrast, doping with manganese oxide was found to substantially increase the rate of radical production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data covers the following:
X-ray photoelectron spectroscopy (XPS) - to collect surface chemical structure changes (using RMIT instrument);
Scanning electron microscopy (SEM) - to collect surface physical structure changes;
Atomic force microscopy (AFM) - to collect surface morphology changes;
Internal/External quantum efficiency (IQE/EQE) – to collect DSSC (Dye Sensitised Solar Cells) efficiency data;
Discharge/Charge capacity - to collect battery efficiency data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt-free perovskite cathode with excellent oxygen reduction reaction (ORR) properties below 800 °C is a key material toward wide implementation of intermediate-temperature solid oxide fuel cells. This work reports the phase structure, microstructure and performance of such cathode based on the composite phases of triclinic Ba0.9Bi0.1FeO3-δ, cubic BaFeO3 and orthorhombic BaFe2O4 prepared by sol–gel route. The resultant barium ferrites composite cathode exhibits uniform particles, pores and elements distribution. In particular, favorable ORR properties of this cathode is demonstrated by very low interfacial resistance of only 0.036 and 0.072 Ω cm2 at 750 and 700 °C and maximum power density of 1295 and 840 mW cm−2 at 750 and 700 °C.