9 resultados para Coastal rocky reefs

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ecological connectivity is important for effective marine planning and biodiversity conservation. Our aim was to identify factors important in influencing variation in benthic community structure on shallow rocky reefs in 2 regions of the Mediterranean Sea with contrasting oceanographic regimes. We assessed beta (β) diversity at 146 sites in the littoral and shallow sublittoral from the Adriatic/Ionian Seas (eastern region) and Ligurian/Tyrrhenian Seas (western region) using a null modelling approach to account for variation in species richness. The distance decay relationship between species turnover within each region and geographic distance by sea was determined using generalised linear models. Mantel tests were used to examine correlations between β?diversity and connectivity by ocean currents, estimated from Lagrangian dispersal simulations. Variation in β diversity between sites was partitioned according to environmental and spatial components using a distance-based redundancy approach. Species turnover along a gradient of geographic distance was greater by a factor of 3 to 5 in the western region than the eastern region, suggesting lower connectivity between sites. β diversity was correlated with connectivity by ocean currents at both depths in the eastern region but not in the western region. The influ-OPEN ACCESS ence of spatial and environmental predictors of β diversity varied considerably between regions, but was similar between depths. Our results highlight the interaction of oceanographic, spatial and environmental processes influencing benthic marine β diversity. Persistent currents in the eastern region may be responsible for lower observed β diversity compared to the western region, where patterns of water circulation are more variable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As marine management measures increasingly protect static areas of the oceans, it is important to make sure protected areas capture and protect persistent populations. Rocky reefs in many temperate areas worldwide serve as habitat for canopy-forming macroalgae and these structure-forming species of kelps (order Laminariales) often serve as important habitat for a great diversity of species. Macrocystis pyrifera is the most common canopy-forming kelp species found along the coast of California, but the distribution and abundance of M. pyrifera varies in space and time. The purpose of this study is to determine what environmental parameters are correlated with and their relative contribution to the spatial and temporal persistence of M. pyrifera along the central coast of California and how well those environmental parameters can be used to predict areas where this species is more likely to persist. Nine environmental variables considered in this study included depth of the seafloor, structure of the rocky reef, proportion of rocky reef, size of kelp patch, biomass of kelp within a patch, distance from the edge of a kelp patch, sea surface temperature, wave orbital velocities, and population connectivity of individual kelp patches. Using a generalized linear mixed effects model (GLMM), the persistence of M. pyrifera was significantly associated with seven of the nine variables considered: depth, complexity of the rocky reef, proportion of rock, patch biomass, distance from the edge of a patch, population connectivity, and wave orbital velocities. These seven environmental variables were then used to predict the persistence of kelp across the central coast, and these predictions were compared to a reserved dataset of M. pyrifera persistence, which was not used in the creation of the GLMM. The environmental variables were shown to accurately predict the persistence of M. pyrifera within the central coast of California (r = 0.71, P < 0.001). Because persistence of giant kelp is important to the community structure of kelp forests, understanding those factors that support persistent populations of M. pyrifera will enable more effective management of these ecosystems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biological invasions are acknowledged among the main drivers of global changes in biodiversity. Despite compelling evidence of species interactions being strongly regulated by environmental conditions, there is a dearth of studies investi-gating how the effects of non-native species vary among areas exposed to different anthropogenic pressures. Focusing on marine macroalgae, we performed a meta-analysis to test whether and how the direction and magnitude of their effects on resident communities and species varies in relation to cumulative anthropogenic impact levels. The relationship between human impact levels and non-native species impact intensity emerged only for a reduced subset of the response variables examined. Yet, there was a trend for the effects of non-native species on community biomass and abundance and on species abundance to become less negative at heavily impacted sites. By contrast, the magnitude of negative effects of seaweed on community evenness tended to increase with human impact levels. The hypothesis of decreasing severity of invader’ impacts along a gradient of habitat degradation was also tested experimentally at a regional scale by comparing the effects of the removal of non-native alga,
Caulerpa cylindracea, on resident assemblages among rocky reefs exposed to different anthropogenic pressures. Assemblages at urban and pristine site did not differ when invaded, but did so when C. cylindracea was removed. Our results suggest that, despite the generally weak relationship between human impacts levels and non-native species impacts, more negative impacts can be expected in less stressful environments (i.e. less degraded or pristine sites), where competitive interactions are presumably the driving force structuring resident communities. Implementing strategies for controlling the establishment of non-native seaweeds should be, thus, considered a priority for preserving biodiversity in relatively pristine areas. On the other hand, control of invaders at degraded sites could be warranted to lessen their role as propagule sources

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The difficulty in teasing apart the effects of biological invasions from those of otheranthropogenic perturbations has hampered our understanding of the mechanismsunderpinning the global biodiversity crisis. The recent elaboration of global-scalemaps of cumulative human impacts provides a unique opportunity to assess howthe impact of invaders varies among areas exposed to different anthropogenicactivities. A recent meta-analysis has shown that the effects of invasive seaweeds onnative biota tend to be more negative in relatively pristine than in human-impactedenvironments. Here, we tested this hypothesis through the experimental removalof the invasive green seaweed, Caulerpa cylindracea, from rocky reefs across theMediterranean Sea. More specifically, we assessed which out of land-based andsea-based cumulative impact scores was a better predictor of the direction andmagnitude of the effects of this seaweed on extant and recovering native assemblages.Approximately 15 months after the start of the experiment, the removal ofC. cylindracea from extant assemblages enhanced the cover of canopy-formingmacroalgae at relatively pristine sites. This did not, however, result in major changesin total cover or species richness of native assemblages. Preventing C. cylindraceare-invasion of cleared plots at pristine sites promoted the recovery of canopyformingand encrusting macroalgae and hampered that of algal turfs, ultimatelyresulting in increased species richness. These effects weakened progressively withincreasing levels of land-based human impacts and, indeed, shifted in sign at theupper end of the gradient investigated. Thus, at sites exposed to intense disturbancefrom land-based human activities, the removal of C. cylindracea fostered the coverof algal turfs and decreased that of encrusting algae, with no net effect on speciesrichness. Our results suggests that competition from C. cylindracea is an importantdeterminant of benthic assemblage diversity in pristine environments, but less so inspecies-poor assemblages found at sites exposed to intense disturbance from landbasedhuman activities, where either adverse physical factors or lack of propagulesmay constrain the number of potential native colonizers. Implementing measures toreduce the establishment and spread of C. cylindracea in areas little impacted byland-based human activities should be considered a priority for preserving thebiodiversity of Mediterranean shallow rocky reefs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

 Large brown seaweeds (kelps) form forests in temperate and boreal marine systems that serve as foundations to the structure and dynamics of communities. Mapping the distributions of these species is important to understanding the ecology of coastal environments, managing marine ecosystems (e.g., spatial planning), predicting consequences of climate change and the potential for carbon production. We demonstrate how combining seafloor mapping technologies (LiDAR and multibeam bathymetry) and models of wave energy to map the distribution and relative abundance of seaweed forests of Ecklonia radiata can provide complete coverage over hundreds of square kilometers. Using generalized linear mixed models (GLMMs), we associated observations of E. radiata abundance from video transects with environmental variables. These relationships were then used to predict the distribution of E. radiata across our 756.1km2 study area off the coast of Victoria, Australia. A reserved dataset was used to test the accuracy of these predictions. We found that the abundance distribution of E. radiata is strongly associated with depth, presence of rocky reef, curvature of the reef topography, and wave exposure. In addition, the GLMM methodology allowed us to adequately account for spatial autocorrelation in our sampling methods. The predictive distribution map created from the best GLMM predicted the abundance of E. radiata with an accuracy of 72%. The combination of LiDAR and multibeam bathymetry allowed us to model and predict E. radiata abundance distribution across its entire depth range for this study area. Using methods like those presented in this study, we can map the distribution of macroalgae species, which will give insight into ecological communities, biodiversity distribution, carbon uptake, and potential sequestration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Surf Coast Shire in regional Victoria contains some of the most spectacular coastline in Australia, running from Point Impossible in the east to just west of the resort town of Lorne. The Surf Coast Shire council is committed to ecologically sustainable tourism based on its coastal assets, including the important intertidal environments. The challenge for the Shire is to protect and enhance the biodiversity of its intertidal areas whilst allowing for their sustainable use as a critical component of the local economy. In order to do this the Council needed to identify the conservation values of intertidal areas within the shire and assess the impacts that current human use has on these values. The impacts of shellfish collecting on rocky shores were identified as an issue of particular concern. We have conducted a research project with the Shire to provide a scientific basis for management decisions. The principal aims of this project were to: (1) determine the patterns of human use of intertidal habitats; (2) measure the impacts of human usage on biological communities and species populations; and (3) to identify intertidal sites of regional conservation significance for the Surf Coast Shire. Surveys of human usage identified reef walking, looking in rock pools and fossicking as major uses of rocky shores within the Surf Coast. This poster reports the effects of this usage on gastropod populations of rocky shores within the Surf Coast Shire. A small proportion of visitors collected intertidal organisms. Shores were categorized as high or low use based on total numbers of people observed at each shore over the first year of the project. Mean size and catch per unit effort were compared for several gastropod species between high use and low use shores. The results presented here show that the populations of some gastropod species are of smaller mean size and less abundant on high use shores than on low use shores. There was also a noticeable difference in degree of effect detected between sandstone and mudstone shores. The implications of these results are briefly discussed in terms of management options available to the Shire.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coasts composed of resistant lithologies such as granite are generally highly resistant to erosion. They tend to evolve over multiple sea level cycles with highstands acting to remove subaerially weathered material. This often results in a landscape dominated by plunging cliffs with shore platforms rarely occurring. The long-term evolution of these landforms means that throughout the Quaternary these coasts have been variably exposed to different sea level elevations which means erosion may have been concentrated at different elevations from today. Investigations of the submarine landscape of granitic coasts have however been hindered by an inability to accurately image the nearshore morphology. Only with the advent of multibeam sonar and aerial laser surveying can topographic data now be seamlessly collected from above and below sea level. This study tests the utility of these techniques and finds that very accurate measurements can be made of the nearshore thereby allowing researchers to study the submarine profile with the same accuracy as the subaerial profile. From a combination of terrestrial and marine LiDAR data with multibeam sonar data, it is found that the morphology of granite domes is virtually unaffected by erosion at sea level. It appears that evolution of these landscapes on the coast is a very slow process with modern sea level acting only to remove subaerially weathered debris. The size and orientation of the joints determines the erosional potential of the granite. Where joints are densely spaced (<2 m apart) or the bedrock is highly weathered can semi-horizontal surfaces form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new found ability to measure physical attributes of the marine environment at high resolution across broad spatial scales has driven the rapid evolution of benthic habitat mapping as a field in its own right. Improvement of the resolution and ecological validity of seafloor habitat distribution models has, for the most part, paralleled developments in new generations of acoustic survey tools such as multibeam echosounders. While sonar methods have been well demonstrated to provide useful proxies of the relatively static geophysical patterns that reflect distribution of benthic species and assemblages, the spatially and temporally variable influence of hydrodynamic energy on habitat distribution have been less well studied. Here we investigate the role of wave exposure on patterns of distribution of near-shore benthic habitats. A high resolution spectral wave model was developed for a 624 km2 site along Cape Otway, a major coastal feature of western Victoria, Australia. Comparison of habitat classifications implemented using the Random Forests algorithm established that significantly more accurate estimations of habitat distribution were obtained by including a fine-scale numerical wave model, extended to the seabed using linear wave theory, than by using depth and seafloor morphology information alone. Variable importance measures and map interpretation indicated that the spatial variation in wave-induced bottom orbital velocity was most influential in discriminating habitat classes containing the canopy forming kelp Ecklonia radiata, a foundation kelp species that affects biodiversity and ecological functioning on shallow reefs across temperate Australasia. We demonstrate that hydrodynamic models reflecting key environmental drivers on wave-exposed coastlines are important in accurately defining distributions of benthic habitats. This study highlights the suitability of exposure measures for predictive habitat modeling on wave-exposed coastlines and provides a basis for continuing work relating patterns of biological distribution to remotely-sensed patterns of the physical environment.