28 resultados para Co-Fe-W alloys

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equal-channel angular pressing (ECAP) is a well-established thermo-mechanical processing technique. This technique allows virtually unlimited strain and manipulation of texture by processing route, while the cross-section of the sample remains unchanged during processing. In order to clarify the effectiveness of ECAP on preparing anisotropic permanent magnets, the microstructure and magnetic properties of a melt-spun Nd13.5Fe73.8Co6.7B5.6Ga0.4 alloy processed at 773-K for 300-s by ECAP were investigated. Macrotexture analysis carried out for the exit channel of ECAP shows that the basal plane of the tetragonal Nd2Fe14B crystal aligns parallel to the shear band, i.e., the c-axis texture formation normal to the shear band induced by the ECAP process. Due to this texture formation, the technical magnetization behaviour becomes anisotropic, and the remanent magnetization is clearly enhanced along the direction perpendicular to the shear band. This anisotropic microstructure is realized at a relatively low processing temperature of 773-K, well below the melting point of the Nd-rich intergranular phase. As a consequence of this lower processing temperature, the nanostructure of the melt-spun alloy remains approximately 20 to 30-nm, considerably smaller than the typical grain size obtained after conventional die-upsetting. Our study demonstrates that equal-channel angular pressing has a potential for realising anisotropic nanostructured magnets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline and microcrystalline Fe-10Cr alloys were prepared by high energy ball milling followed by compaction and sintering, and then oxidized in air for 52 hours at 400ºC. The oxidation resistance of nanocrystalline Fe-10Cr alloy as determined by measuring the weight gain after regular time intervals was compared with that of the microcrystalline alloy of same chemical composition (also prepared by the same processing route and oxidized under identical conditions). Oxidation resistance of nanocrystalline Fe10Cr alloy was found to be in excess of an order of magnitude superior than that of microcrystalline Fe10Cr alloy. The paper also presents results of secondary ion mass spectrometry of oxidized samples of nanocrystalline and microcrystalline Fe-Cr alloys, evidencing the formation of a more protective oxide scale in the nanocrystalline alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed rare earth organophosphates have been investigated as potential corrosion inhibitors for AA2024-T3 with the aim of replacing chromate-based technologies. Cerium diphenyl phosphate (Ce(dpp) 3) and mischmetal diphenyl phosphate (Mm(dpp) 3) were added to epoxy coatings applied to AA2024-T3 panels and they were effective in reducing the amount and rate of filiform corrosion in high humidity conditions. Ce(dpp) 3 was the most effective and characterisation of the coating formulations showed approximately a factor of 5 reduction in both the number of corrosion filaments initiated as well as the length of these. Mm(dpp) 3 appeared to reduce the corrosion growth rate by a factor of 2 although it was the more effective inhibitor in solution studies. Spectroscopic characterisation of the coatings indicated that the cerium based inhibitor may disrupt network formation in the epoxy thus resulting in a coating that absorbed more water and allowed greater solubilisation of the corrosion inhibiting compound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study an Fe-18Al (at.%) alloy after various thermal treatments at different times (24-336 h) and temperatures (250-1100 °C) to determine the nature of the so-called 'komplex' phase state (or "K-state"), which is common to other alloy systems having compositions at the boundaries of known order-disorder transitions and is characterised by heterogeneous short-range-ordering (SRO). This has been done by direct observation using atom probe tomography (APT), which reveals that nano-sized, ordered regions/particles do not exist. Also, by employing shell-based analysis of the three-dimensional atomic positions, we have determined chemically sensitive, generalised multicomponent short-range order (GM-SRO) parameters, which are compared with published pairwise SRO parameters derived from bulk, volume-averaged measurement techniques (e.g. X-ray and neutron scattering, Mössbauer spectroscopy) and combined ab-initio and Monte Carlo simulations. This analysis procedure has general relevance for other alloy systems where quantitative chemical-structure evaluation of local atomic environments is required to understand ordering and partial ordering phenomena that affect physical and mechanical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, LaMO3 and LaNi0.5M0.5O3 (M = Ni, Co, Fe, Mn and Cr) perovskite oxide electrocatalysts were synthesized by a combined ethylenediaminetetraacetic acid-citrate complexation technique and subsequent calcinations at 1000 °C in air. Their powder X-ray diffraction patterns demonstrate the formation of a specific crystalline structure for each composition. The catalytic property of these materials toward the oxygen reduction reaction (ORR) was studied in alkaline potassium hydroxide solution using the rotating disk and rotating ring-disk electrode techniques. Carbon is considered to be a crucial additive component because its addition into perovskite oxide leads to optimized ORR current density. For LaMO3 (M = Ni, Co, Fe, Mn and Cr)), in terms of the ORR current densities, the performance is enhanced in the order of LaCrO3, LaFeO3, LaNiO3, LaMnO3, and LaCoO3. For LaNi0.5M0.5O3, the ORR current performance is enhanced in the order of LaNi0.5Fe0.5O3, LaNi0.5Co0.5O3, LaNi0.5Cr0.5O3, and LaNi0.5Mn0.5O3. Overall, LaCoO3 demonstrates the best performance. Most notably, substituting half of the nickel with cobalt, iron, manganese, or chromium translates the ORR to a more positive onset potential, suggesting the beneficial catalytic effect of two transition metal cations with Mn as the most promising candidate. Koutecky–Levich analysis on the ORR current densities of all compositions indicates that the four-electron pathway is favored on these oxides, which are consistent with hydroperoxide ion formation of <2%.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The development of physically-based models of microstructural evolution during thermomechanical processing of metallic materials requires knowledge of the internal state variable data, such as microstructure, texture, and dislocation substructure characteristics, over a range of processing conditions. This is a particular problem for steels, where transformation of the austenite to a variety of transformation products eradicates the hot deformed microstructure. This article reports on a model Fe-30wt% Ni-based alloy, which retains a stable austenitic structure at room temperature, and has, therefore, been used to model the development of austenite microstructure during hot deformation of conventional low carbon-manganese steels. It also provides an excellent model alloy system for microalloy additions. Evolution of the microstructure and crystallographic texture was characterized in detail using optical microscopy, X-ray diffraction (XRD), SEM, EBSD, and TEM. The dislocation substructure has been quantified as a function of crystallographic texture component for a variety of deformation conditions for the Fe-30% Ni-based alloy. An extension to this study, as the use of a microalloyed Fe-30% Ni-Nb alloy in which the strain induced precipitation mechanism was studied directly. The work has shown that precipitation can occur at a much finer scale and higher number density than hitherto considered, but that pipe diffusion leads to rapid coarsening. The implications of this for model development are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current literature pertaining to the shape memory effect in the Fe–Mn–Si-based system is critically discussed. It is argued that the
enhanced shape memory previously attributed to NbC precipitation is mainly due to the associated thermo-mechanical treatments.
It is concluded that the thermo-mechanical processing of the alloy is the dominant factor that determines the shape memory effect in
this alloy system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shear bands formed during both cold and hot plastic deformation have been linked with several proposed mechanisms for the formation of ultrafine grains. The aim of the present work was to undertake a detailed investigation of the microstructural and crystallographic characteristics of the shear bands formed during hot deformation of a 22Cr-19Ni-3Mo (mass%) austenitic stainless steel and a Fe-30 mass%Ni based austenitic model alloy. These alloys were subjected to deformation in torsion and plane strain compression (PSC), respectively, at temperatures of 900°C and 950°C and strain rates of 0.7s-1 and 10s-1, respectively. Transmission electron microscopy and electron backscatter diffraction in conjunction with scanning electron microscopy were employed in the investigation. It has been observed that shear bands already started to form at moderate strains in a matrix of pre-existing microbands and were composed of fine, slightly elongated subgrains (fragments). These bands propagated along a similar macroscopic path and the subgrains, present within their substructure, were rotated relative to the surrounding matrix about axes approximately parallel to the sample radial and transverse directions for deformation in torsion and PSC, respectively. The subgrain boundaries were largely observed to be non-crystallographic, suggesting that the subgrains generally formed via multiple slip processes. Shear bands appeared to form through a co-operative nucleation of originally isolated subgrains that gradually interconnected with the others to form long, thin bands that subsequently thickened via the formation of new subgrains. The observed small dimensions of the subgrains present within shear bands and their large misorientations clearly indicate that these subgrains can serve as potent nucleation sites for the formation of ultrafine grain structures during both subsequent recrystallisation, as observed during the present PSC experiments, and phase transformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The shape memory behaviour of two Fe–Mn–Si-based alloys has been investigated. One alloy was a reference alloy, and the other alloy was
similar in composition except that it contained 0.55 wt% Ti. Following solution treatment and quenching, strip samples were subjected to three types
of treatments; isothermal holding, cold rolling followed by isothermal holding, and hot rolling followed by isothermal holding. These treatments
resulted in the formation of intermetallic precipitates in the Ti-containing alloy, while the reference alloy remained precipitate-free. In comparing
the shape memory of the reference and the particle-containing alloy after identical heat treatments, it was found that the formation of precipitates
had a beneficial effect on the shape memory in all cases. In general, the larger precipitates caused a larger increase in the shape memory. The effect
of particle size on shape memory has been analysed using the current data and published results for a range of precipitate types.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The stability of austenite in a number of Fe–Mn–Si-based shape memory alloys has been investigated. It was found that a grain boundary precipitate of BCC structure is formed over a wide range of alloy compositions and heat treatment temperatures. This grain boundary phase has been identified as the chi (χ) phase. Although up to 3 vol.% of the grain boundary precipitate was generated by isothermal aging in the range 500–800 °C, it was found not to markedly affect the mechanical properties or the shape memory effect. Nano-indentation indicated that the hardness and strength of the parent and precipitate phase are very similar, as are their compositions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The oxidative electrochemistry of [CpFe(CO)2]2, 1 (Cp = [η5-C5H5]–), was examined in detail in ionic liquids (ILs) composed of ions of widely varying Lewis acid−base properties. Cyclic voltammetric responses were strongly dependent on the nucleophilic properties of the IL anion, but all observations are consistent with the initial formation of 1+ followed by attack from the IL anion. In [NTf2]–-based ILs ([NTf2]– = bis(trifluoromethylsulfonyl)amide), the process shows nearly ideal chemical reversibility as the reaction between 1+ and [NTf2]– is very slow. This is highly significant, as 1+ is known to be highly susceptible to nucleophilic attack and its stability indicates a remarkable lack of coordinating ability of these ILs. In 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][PF6], the oxidation of 1 is still largely reversible, but there is more pronounced evidence of [PF6]– coordination. In contrast, 1 exhibits an irreversible two-electron oxidation process in a dicyanamide-based IL. This overall oxidation process is thought to proceed via an ECE mechanism, details of which are presented. Rate constants were estimated by fitting the experimental data to digital simulations of the proposed mechanism. The use of [NTf2]–-based ILs as a supporting electrolyte in CH2Cl2 was examined by using this solvent/electrolyte as a medium in which to perform bulk electrolyses of 1 and 1*, the permethylated analogue [Cp*Fe(CO)2]2 (Cp* = [η5-C5(CH3)5]–). These cleanly yielded the corresponding binuclear radical-cation species, 1+ and 1*+, which were subsequently characterized by electron paramagnetic resonance (EPR) spectroscopy. In addition to the above oxidation studies, the reduction of 1 was studied in each of the ILs; differences in cathodic peak potentials are attributed, in part, to ion-pairing effects. This study illustrates the wide range of electrochemical environments available with ILs and demonstrates their utility for the investigation of the redox properties of metal carbonyls and other organometallic compounds.