37 resultados para Clover as feed

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Juvenile Cherax destructor (commonly called theyabby) were cultured in earthen-based ponds and tanks for 70–105d, and were fed pellets and/or a forage crop of the perennialwhiteclover, Trifolium repens. Three supplementary feedingstrategies were evaluated. Yabby growth on pellets consistently exceeded (by67–159%) that obtained on clover. Base-line yields for extensiveproduction systems are around 400 kg ha–1. Thesupplementary addition of T. repens produced yields of 635kg ha–1 (in ponds) to 1086 kgha–1 (in tanks). The sequential addition of cut-cloverto tanks stimulated growth to levels approaching those achieved on pellets.Yabbies stocked into ponds at 17 m–2 and fed 33%protein pellets for 100 d, resulted in a yield of 1117 kgha–1.Pellet inputs at a rate of 129–249 g m–2(dry matter) and 38–83 g m–2 (protein) over70–100 d resulted in acceptable growth and feed utilisationindices. Clover inputs of 534–682 g m–2 (asdry matter) or 84–177 g m–2 (as protein)produced reasonable growth rates but poor feed utilisation indices. Aconsiderable quantity of the dry matter and protein content of clover waseitherinefficiently utilised or directed into other production pathways. In tanks,clover inputs from 113–296 g m–2 (drymatter) and 24–54 g m–2 (protein) weresufficient to maintain high growth rates for 4 weeks, while in ponds, inputs of21 g m–2 (dry matter) and 4.3 gm–2 (protein) were sufficient for 3 weeks. During theearly weeks of production no growth advantage was gained by providing pelletstoanimals cultured in forage-based systems. Forage depletion occurred after3–4 weeks and was probably a major growth limiting factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n two independent experiments, the effects of dietary inclusion of canola and linseed oil were evaluated in juvenile Murray cod (Maccullochella peelii peelii, Mitchell) over a 112-day period. In each experiment, fish received one of five semi-purified diets in which the dietary fish oil was replaced with canola oil (Experiment A) or linseed oil (Experiment B) in graded increments of 25% (0–100%). Murray cod receiving the graded canola and linseed oil diets ranged in final weight from 112.7 ± 7.6 to 73.8 ± 9.9 g and 93.9 ± 3.6 to 74.6 ± 2.2 g, respectively, and exhibited a negative trend in growth as the inclusion level increased. The fatty acid composition of the fillet and liver were modified extensively to reflect the fatty acid composition of the respective diets. Levels of oleic acid (18:1 n-9) and linoleic acid (18:2 n-6) increased with each level of canola oil inclusion while levels of α-linolenic acid (18:3 n-3) increased with each level of linseed oil inclusion. The concentration of n-3 highly unsaturated fatty acids in the fillet and liver decreased as the amount of vegetable oil in the diets increased. It is shown that the replacement of fish oil with vegetable oils in low fish meal diets for Murray cod is possible to a limited extent. Moreover, this study reaffirms the suggestion for the need to conduct ingredient substitution studies for longer periods and where possible to base the conclusions on regression analysis in addition to anova.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines Philip Reeve’s novel for children, Mortal Engines, and M.T. Anderson’s young adult novel, Feed, by assessing these dystopias as prototypical texts of what Ulrich Beck calls risk society. Through their visions of a fictional future, the two narratives explore the hazards created by contemporary techno-economic progress, predatory global politics and capitalist excesses of consumption. They implicitly pose the question: “In the absence of a happy ending for western civilisation, what kind of children can survive in dystopia?”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This experiment was conducted to examine the effect of feeding small, isoenergetic amounts of supplements containing high protein and functional lipid components, rather than the greater amounts of cereal and/or legume grains usually fed during the dry season in Australia, on dry matter intake (DMI), growth performance, plasma metabolites, and fat deposition in lambs consuming low quality roughage. Thirty two crossbred wether lambs ([Merino × Border Leicester] × Poll Dorset) were divided into four groups by stratified randomization according to liveweight (26–33 kg). After a 7-day adaptation to a hay diet (lucerne hay:oaten hay; 30:70), lambs were allocated to four treatments consisting of (1) basal diet of lucerne hay:oat hay (20:80; metabolizable energy (ME) = 7.0 MJ/kg DM), Basal; (2) basal + canola meal (84 g per day), CM; (3) basal + soymeal (75 g per day), SM; or (4) basal + fishmeal (80 g per day), FM. Daily hay and supplement DMI, and weekly liveweight were recorded during a 53-day experimental study. Blood samples were taken on day 1 and pre- and post-feeding on days 30 and 53 to measure changes in plasma glucose and plasma urea nitrogen (PUN) concentration. At the end of the experiment, lambs were slaughtered and hot carcass weight (HCW) recorded; cold carcass fatness (total muscle and adipose tissue depth at 12th rib, 110 mm from midline; GR) was determined at 24 h postmortem. Total DMI was increased (P < 0.001) in CM, SM and FM treatments, but basal hay DMI intake was only increased (P < 0.01) in CM and FM treatments compared with Basal treatment. This resulted in significant (P < 0.01) increases in metabolizable energy (ME) and crude protein (CP) intakes in all supplemented treatments, with the highest intakes recorded in the FM treatment. Liveweight gain (LWG) was significantly increased in CM and SM (P < 0.05) and FM (P < 0.01) treatments but HCW was significantly (P < 0.01) heavier slaughter only in the FM treatment. Feed conversion efficiency (P < 0.001) and GR fat at depth (P < 0.05) was reduced in all supplement treatments compared with Basal. Plasma glucose concentration was significantly (P < 0.05) increased after feeding in all treatments but there was no treatment effect. PUN was significantly increased over time in the supplemented treatments compared with the Basal treatment; there was no significant difference between supplement treatments by day 53. Results show that feeding small amounts of high protein and lipid-containing supplements improves production responses and are beneficial in producing carcasses with more lean compared with carcasses from lambs fed a low quality hay diet.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the nutrition, growth and production of C. destructor was examined. Selected nutritional requirements of juvenile animals were determined under controlled conditions with the aim of developing a pelleted diet for use in hatcheries, nurseries and growout situations. The best developed diet was assessed for its potential as a supplementary feed for animals cultured in earthen environments. The protein requirements were first determined simultaneously with an evaluation of the effect of replacing animal protein (fishmeal) by soybean meal. Juveniles were reared communally for 59 d on isoenergetic diets containing 15-30% protein and graded levels of soybean meal (0-60%, of protein). When soybean meal was included at a level of 40-60%, growth was reduced relative to that achieved with control diets containing 15% and 20% protein, but this was not the case at a 20% soybean meal substitution level. A two-way interaction occurred between dietary protein and soybean meal content. Higher protein feeds enabled higher soybean meal inclusion levels without significantly affecting growth. Protein increases of 5% produced better growth at the 40% and 60% soybean meal substitution levels. This effect was less pronounced in the control and the 20% soybean meal diets. Carcass %protein increased and %lipid decreased as dietary protein increased. A similar effect occurred by increasing the soybean meal level to 60%. No obvious trend in carcass moisture, energy, and ash occurred. A protein requirement of 30% was apparent when fish meal and soybean meal were included in diets at levels of 20% and 24% (dry matter) respectively. Alternative protein sources to soybean meal were subsequently identified. Juveniles were maintained for 12 weeks on isoenergetic diets containing 30% protein and differing in the primary source of protein used, with meat, snail, soybean, yabby, and zooplankton meals comprising the major protein ingredient. No significant difference occurred in mean weight (MW), percentage weight gain (%WG), SGR or survival among diets. Food conversion ratios (FCR) were low, with a minimum value of 0.95 for the snail-based diet. The apparent net protein utilisation (ANPU) varied from 29.6% (zooplankton-based diet) to 41.2% (snail-based diet). Carcass composition varied with diet, with the greatest difference occurring in carapace colour. Animals fed the zooplankton-based diet developed the strongest, most natural pigmentation. A new combination of previously used protein-based ingredients was subsequently tested with reference to two yabby species, Cherax albidus and Cherax destructor, that were grown simultaneously in identical conditions. Juvenile male animals were reared individually for 20 weeks on isoenergetic diets containing 15% or 30% protein with fish meal, soybean meal, yabby meal and wheat products forming the basis of the diets. C albidus grew the fastest and utilised the food the most effectively. Carcass composition was influenced by diet with the 30% protein diet resulting in an increase in carcass protein and ash and a decrease in carcass lipid and energy relative to the low protein diet. Carcass moisture and calcium were not affected by diet. The intermoult period (IP) was highly dependent on the premoult weight (W) but the mean moult increment (WI, as weight) was independent of the PM. The orbital carapace length (OCL) and the abdominal length (ABL) %moult increments generally declined with an increase in PM whereas the propus length (PL) %moult increment generally increased. The IP, WI, %OCL, %ABL, and %PL moult increments varied according to diet and to species. Elevated dietary protein caused a reduction to the IP (for similar sized animals) by 11 d and 7 d and an increase to the WI by 85% and 81% in C. albidus and C destructor respectively. Dietary induced morphological changes also occurred. Animals of a standard OCL (both species) had significantly larger abdomens when fed the higher protein diet. Growth on the best developed diet was compared to the growth obtained on a natural diet of freshwater zooplankton. Juveniles were reared individually for 12 weeks on the two diets. The MW, %WG and SGR were higher for the zooplankton diet. Carcass composition was influenced by diet and the zooplankton fed animals had a higher carcass %protein, %lipid, %ash and %fibre content and were more richly pigmented than animals fed pellets. The IP and the WI were highly dependent on the PM and varied according to diet; feeding with zooplankton reduced the IP by 1.2 days and increased the WI by 13.7% compared to pellets. Nutrient digestibility was determined for the pelleted diets evaluated in the growth trials. Protein digestibility (PD) and dry matter digestibility (DMD), using chromic oxide (Cr2O3) as an exogenous marker, were high for all diets, at around 93% and 83% respectively. Ash digestibility varied considerably from 17% to 73% for the snail and yabby meal diets respectively. Crude fibre digestibility was around 50% and probably indicates cellulase activity. Alternative markers to Cr2O3 were evaluated. Ash was considered to be the most suitable alternative to Cr2O3, providing a reasonable, albeit lower, estimate of nutrient digestibility. Cr2O3 and ash were preferentially excreted whereas fibre was retained in the digestive system for a longer period, consequently, the collection of a particular fraction of the deposited faeces (late or early) substantially affected the digestibility coefficients. In earthen-based environments, animals fed the best developed diet were compared to animals cultured using a forage crop of clover (Trifolium repens). Three supplementary feeding strategies representing varying levels of management intensity were evaluated in a series of trials conducted in ponds and pond microcosms. Growth on pellets consistently exceeded that obtained with the forage crop, with final MW being 67-159% higher than that using clover and appeared to be the result of direct pellet consumption and from a pellet fertiliser effect (on the sediment). Within-pond DMD and PD were high and similar for each treatment (DMD = 51-58%; PD = 89-92%). In the control pond, DMD and PD increased with each successive flood. The faecal egestion rate (PER) decreased with each successive flood in all ponds, and is negatively related to animal weight and to foregut fullness (FF) according to power curves. FF was consistently lowest in the control pond. Mean FF was 48.5%, 62.3%, and 26.7% for the pellet, crop and control ponds respectively. FF increased to the third flood in each pond. The foregut protein content was high in all samples and the mean values were 33.9%, 32.7% and 35.6% for the pellet, crop and control ponds respectively. Foregut ash was highly variable within each pond and is inversely related to the foregut protein content. In the control and pellet ponds the highest foregut ash content occurred during flood 1. The culture system (aquaria or pond) strongly influenced the composition of the foregut content. The foregut of animals fed the manufactured diet (B2) in ponds contained approximately 176% more ash and 5% more protein than the foregut of animals fed in bare-bottom tanks. The FF of the tank fed animals was approximately 45% higher than the FF of pond fed animals after a similar feeding period. Base-line yields for extensive production systems appeared to be around 400kg ha-1. The supplementary addition of T. repens produced yields of approximately 635kg ha-1 (in ponds) to around 1086kg ha-1 (in tanks). The sequential addition of cut-clover to tanks stimulated growth to levels approaching those achieved on pellets. Yabbies stocked into ponds at 15-20 m-2 with a mean weight of 2.67g and fed a 30% protein pelleted diet for 100 d, resulted in a yield of approximately 1117kg ha-1, but only 2% of the population were above a marketable size of 50g. The feed utilisation indices were better for animals reared on pellets in bare-bottom tanks than in earthen environments, indicating some degree of pellet wastage when natural feeds are simultaneously present. High apparent food conversion ratios and low protein efficiency ratios occurred when the forage crop was provided. A considerable quantity of the dry matter and protein content of the forage crop was either inefficiently utilised or directed into other production pathways. Sowing a forage crop into pond microcosms to which a pelleted diet was also provided, did not enhance growth performance. Pelleted feed inputs at a rate of approximately 129g m-2 to 198g m-2 (dry matter) and 38g -2 to 64g m-2 (protein) over 70-100 d resulted in acceptable growth and feed utilisation indices for animals reared in ponds and pond microcosms. Forage crop inputs of approximately 533g m-2 to 680g m-2 (as dry matter) or 84g m-2 to 177g m-2 (as protein) over a 70-100 d period produced reasonable growth rates but poor feed utilisation indices. Low inputs of dry matter (from 113-296g m-2) and protein (from 24-54g m-2) from clover were sufficient to maintain high growth rates in pond microcosms for around 28 d. In ponds, a very low level of 21g m-2 (dry matter) and 4.3g m-2 (protein) was sufficient for around 3 weeks. Forage depletion appeared to occur beyond week 3-4 and was probably a major growth limiting factor. The mean hepatosomatic index (HSI) was 9.44, 7.68, and 6.79 for the pellet, crop, and control ponds respectively. The relationship between hepatopancreas weight and overall animal weight was significantly different between treatments. The hepatopancreas of pellet-fed animals had the highest %lipid and lowest %ash, %protein, %carbohydrate and %moisture content. In terms of absolute quantities, the only major difference in hepatopancreas composition between treatments occurred for lipid and dry matter content. The hepatopancreas of the pellet-fed animals was a cream/cream-yellow colour and was very fragile, whereas in the other ponds it was a more ‘natural’ bright yellow colour and was structurally more robust. C. destructor has a capacious foregut, being approximately 5 times the volume of similar sized Penaeids. The foregut volume (V, ml) of the yabby is related to animal weight (W, g) according to V = 0.048 W0.9543. Animals that were starved for 96 h and then fed diet B2 were almost completely foil after 30 min. The ‘apparent enzymatic response’ of animals fed various natural and artificial diets in tanks was evaluated. Nutrient processing time and the enzymatic response following ingestion appeared to be regulated by the chemical and physical properties of the diet. For the natural feeds, foregut protein was 1.2% higher (for zooplankton) and up to 300% higher (for detritus) than dietary protein, whereas ash was 7.5% higher (zooplankton) and 46-63% lower (detritus) than dietary ash. For animals fed diet B2 after 48 h without food, FF was approximately half that of 96 h starved animals after a similar feeding period but foregut protein and ash contents were similar. Finally, the physiological and morphological attributes elucidated in this study are discussed with reference to the ecology of the yabby. High growth rates, excellent feed utilisation indices and high digestibility coefficients for a wide range of diet-types illustrate nutritional flexibility. A capacious foregut, a large hepatopancreas with a high energy storage capacity, the ability to partition and preferentially excrete the low nutrient value inorganic component of the diet, the capacity to alter body form, nutrient processing time and enzymatic secretions in relation to diet-type, and modified behaviour according to feed availability also demonstrate plasticity/adaptability/flexibility. The combined effect of these important characteristics ensures survival in environments that may be adverse and highly variable in terms of nutrient availability. Collectively the morphological and digestive traits elucidated in this study reflect the generalist-type nature of C destructor and indicate that a polytrophic classification still seems appropriate. Several priority areas for further nutrition research are identified and recommendations are made regarding the best-practices to use in the commercial culture of the yabby. Of paramount importance is the further clarification of the nutritional requirements and feeding preferences of animals in various phases of development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global and Asian aquaculture have witnessed a ten-fold increase in production from 1980 to 2004. However, the relative percent contribution to production of each of the major commodities has remained almost unchanged. For example, the contribution of freshwater finfish has declined from 71 to 66 percent in Asia but has remained unchanged globally over the last 20 to 30 years. This fact has dictated trends in the use of fish as a feed for cultured stocks. The growth in the sector has gone hand in hand with an increasing dependence on fish as feed, either directly or indirectly. In a number of countries in the Asia-Pacific region, the aquaculture sector has surpassed the capture fisheries sector in its respective contributions to the gross domestic product (GDP). Aquaculture’s increased contribution to national GDPs can be taken as a clear indication of the contribution of the sector to food security and poverty alleviation. The use of finfish and other aquatic organisms as a feed source can be through direct utilization of whole or chopped raw fish in wet form, through fishmeal and fish oil in formulated feeds, and/or as live fish, although the latter is uncommon and the overall amounts used are relatively small. In the first two categories, the fish used are often termed “trash fish/low-value fish”. Although attempts have been made to define this term, all definitions have a certain degree of ambiguity and/or subjectivity. In this regional review, the amount of fish used as feed sources based on the above categories was estimated primarily from the production data, supported by assumptions on the inclusion levels of fishmeal in formulated feeds and observed feed conversion efficiencies for both formulated feeds and for stock fed trash fish/low-value fish directly. A scenario for the use of fish as feed was developed by starting from the levels of aquaculture production recorded in 2004 and assuming increases in production volumes of 10, 15 and 20 percent by 2010, respectively, for the three trajectories. In parallel, the pattern of wild fish use as feed was projected to change as fish and shrimp farmers increasingly replace farmmade feeds by incorporating trash fish/low-value fish with manufactured feeds that include fishmeal. Also, the fishmeal inclusion rates in manufactured feeds are falling slowly, and this has been incorporated into the projections. The regional review also deals with the production of fishmeal using trash fish/low-value fish in the Asia-Pacific region. Regional fishmeal production as a whole is relatively low when compared with that of major fishmeal-producing countries such as Chile, Iceland and Norway, amounting to approximately 1 million tonnes per year. However, there is a trend towards increasing the use of fish industry waste, such as from the tuna canning industry in Thailand. The fishmeal produced in the region is priced considerably lower than globally traded fishmeal, but its quality is poorer. Total fishmeal use in Asian aquaculture in 2004 was estimated as 2 388 million tonnes, the highest proportion of this being used for crustacean aquaculture (1 418 million tonnes). Based on growth predictions (to year 2010) in the sector and improvements to feed quality and management, it is expected that the quantity of fishmeal used in Asian aquaculture will be slightly less than at present. An estimated 240 000 tonnes of fish oil is used in Asian aquaculture, principally in shrimp feeds. Based on production estimates of commodities in 2004 that rely on trash fish/low-value fish as the main feed source, this regional review suggests that Asian aquaculture currently uses between 2 465 and 3 882 million tonnes, an amount that is predicted to decrease to between 1.890 and 2 795 million tonnes by 2010. The use of trash fish/low-value fish and fishmeal by the aquaculture sector has been repeatedly adjudicated as a non-sustainable practice, and globally the sector is seeking to reduce its dependence on fish as feed through improved feed management practices and development of better quality feeds and feed formulations using alternative ingredients. Over the next few years, decreases in the use of trash fish/low-value fish are also expected to be achieved through better conversion of raw materials into fishmeal and fish oil during the reduction processes. The “way forward” in addressing the issue of the use of fish as feed in aquaculture in the Asia-Pacific region includes the need for a concerted regional research thrust to reduce the use of fish as feed sources in aquaculture, as has been achieved in the animal husbandry sector. Secondly, there is a need to increase farmer awareness on the use of trash fish as feed. This is achievable, considering the similar progress that has been made by the region’s shrimp farming sector, which almost exclusively involves small-scale practitioners who are often clustered in a given locality. The analysis also suggests that the use of trash fish/low-value fish in aquaculture may be compatible with improving food security and alleviating poverty. In Asia, trash fish/low-value fish is mostly landed in areas where there are other suitable fish commodities for human consumption. To make the trash fish/low-value fish suitable and available for human consumption would involve some degree of value-adding and transportation costs, which are likely to increase the price to beyond the means of the consumer, particularly in remote rural areas. Under such a scenario, the direct or indirect use of this perishable resource as a feed source to produce a consumable commodity appears to make economic sense and appears to be the most logical use for overall human benefit. In this manner, trash fish/low-value fish contributes to food security by increasing income generation opportunities and hence contributes to poverty alleviation. Another factor that needs to be taken into account is the large numbers of artisanal fishers who harvest this raw material. The continued use of trash fish/low-value fish, therefore, allows these fishers to maintain their livelihoods1. Admittedly, this is an area that warrants more detailed investigation, from resource use, livelihoods and economic viewpoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility that the heightened cardiovascular risk associated with the menopause can be reduced by increasing dietary isoflavone intake was tested in 17 women by measuring arterial compliance, an index of the elasticity of large arteries such as the thoracic aorta. Compliance diminishes with age and menopause. An initial 3- to 4-week run-in period and a 5-week placebo period were followed by two 5-week periods of active treatment with 40 mg and then 80 mg isoflavones derived from red clover containing genistein, daidzein, biochanin, and formononetin in 14 and 13 women, respectively, with 3 others serving as placebo controls throughout. Arterial compliance, measured by ultrasound as a pressure (carotid artery) and volume (outflow into aorta) relationship, was determined after each period; plasma lipids were measured twice during each period. Urinary output of isoflavones was also determined. Arterial compliance rose by 23% relative to that during the placebo period with the 80-mg isoflavone dose and slightly less with the 40-mg dose (mean6SEM: placebo, 19.761.5; 40 mg, 23.760.7; 80 mg, 24.46 1.4). In the three women receiving continuous placebo, compliance was 16 6 2.2, similar to that during the run-in period for the remaining subjects (17 6 2.1). ANOVA showed a significant (P 5 , 0.001) difference between treatments; by Bonferroni multiple comparisons and by paired t test, differences were significant between placebo and 40- and 80-mg isoflavone doses (by paired t test: P50.039 for placebo vs. 40 mg; P 5 0.018 for placebo vs. 80 mg). Plasma lipids were not significantly affected. An important cardiovascular risk factor, arterial compliance, which diminishes with menopause, was significantly improved with red clover isoflavones. As diminished compliance leads to systolic hypertension and may increase left ventricular work, the findings indicate a potential new therapeutic approach for improved cardiovascular function after menopause.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gull-billed Terns Gelochelidon nilotica wintering in Guinea Bissau mainly fed on fiddler crabs Uca tangeri and were occasionally seen feeding on fish and locusts. As fiddler crabs have a low energy content, terns need a large gross intake to meet daily energy demands. Fiddler crabs also have a low ratio of digestible flesh to exoskeleton, and therefore tern food intake may be limited by gut capacity. Activity budgets of Gullbilled Terns feeding on fiddler crabs showed that a considerable part of the time was spent resting. The duration of resting intervals increased with energy intake and was positively correlated with the metabolisable energy content of the crab eaten, suggesting that resting periods were required for a proper digestion. The poor quality of fiddler crabs was offset by high capture rates. So daily energy expenditure of the terns could easily be met by feeding on fiddler crabs. Even when resting pauses were included in foraging time, foraging for only 1.5 hours on fiddler crabs satisfied the terns’ daily energy demands. Instead, feeding on energy-rich fish would require about 2.5 hours to satisfy daily energy demands. Compared to the more specialised piscivorous Little Tern Sternula albifrons and Sandwich Tern Sterna sandvicensis, capture rate of fish was poor in Gull-billed Terns. From an energetic point of view, wintering Gull-billed Terns feeding on fiddler crabs seem to have an easy living in Guinea Bissau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary lipids and fatty acids are not only fundamental in determining animal performance, but also determine the eating qualities of animal products. Several methods have been used to quantify fatty acid metabolism but most involve expensive in vitro approaches that are not suitable for most laboratories. Furthermore, there is considerable variation between methods with regard to enzyme activity, which makes comparison of results between studies difficult. The recently developed whole-body fatty acid balance method (WBFABM) is a simple and reliable in vivo method for assessing fatty acid metabolism, including rates of liponeogenesis and de novo fatty acid production, β-oxidation of fatty acids and bioconversion (elongation and desaturation) of fatty acids to long-chain polyunsaturated fatty acids. Initially developed for implementation with a fish model, the WBFABM has proven to be a simple and effective method that can be used in any laboratory equipped with a gas chromatography unit. Since its development, it has been used in several farmed finfish feeding trials and in broiler chicken feeding trials. The WBFABM is currently used at research institutions worldwide and its use is increasing in popularity among animal scientists. With this method, it is possible to track the fate of individual dietary fatty acids within the body. The WBFABM could contribute significantly to information generated by animal feeding trials.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of model systems, for example in mice, has shown that the microbiota in the gastrointestinal tract can play an important role in the efficiency of energy extraction from diets. The study reported here aimed to determine whether there are correlations between gastrointestinal tract microbiota population structure and energy use in chickens. Efficiency in converting food into muscle mass has a significant impact on the intensive animal production industries, where feed represents the major portion of production costs. Despite extensive breeding and selection efforts, there are still large differences in the growth performance of animals fed identical diets and reared under the same conditions. Variability in growth performance presents management difficulties and causes economic loss. An understanding of possible microbiota drivers of these differences has potentially important benefits for industry. In this study, differences in cecal and jejunal microbiota between broiler chickens with extreme feed conversion capabilities were analysed in order to identify candidate bacteria that may influence growth performance. The jejunal microbiota was largely dominated by lactobacilli (over 99% of jejunal sequences) and showed no difference between the birds with high and low feed conversion ratios. The cecal microbial community displayed higher diversity, and 24 unclassified bacterial species were found to be significantly (<0.05) differentially abundant between high and low performing birds. Such differentially abundant bacteria represent target populations that could potentially be modified with prebiotics and probiotics in order to improve animal growth performance.