18 resultados para Climate-Vegetation Relationships

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Predicting ecological response to climate change is often limited by a lack of relevant local data from which directly applicable mechanistic models can be developed. This limits predictions to qualitative assessments or simplistic rules of thumb in data-poor regions, making management of the relevant systems difficult. We demonstrate a method for developing quantitative predictions of ecological response in data-poor ecosystems based on a space-for-time substitution, using distant, well-studied systems across an inherent climatic gradient to predict ecological response. Changes in biophysical data across the spatial gradient are used to generate quantitative hypotheses of temporal ecological responses that are then tested in a target region. Transferability of predictions among distant locations, the novel outcome of this method, is demonstrated via simple quantitative relationships that identify direct and indirect impacts of climate change on physical, chemical and ecological variables using commonly available data sources. Based on a limited subset of data, these relationships were demonstrably plausible in similar yet distant (>2000 km) ecosystems. Quantitative forecasts of ecological change based on climate-ecosystem relationships from distant regions provides a basis for research planning and informed management decisions, especially in the many ecosystems for which there are few data. This application of gradient studies across domains - to investigate ecological response to climate change - allows for the quantification of effects on potentially numerous, interacting and complex ecosystem components and how they may vary, especially over long time periods (e.g. decades). These quantitative and integrated long-term predictions will be of significant value to natural resource practitioners attempting to manage data-poor ecosystems to prevent or limit the loss of ecological value. The method is likely to be applicable to many ecosystem types, providing a robust scientific basis for estimating likely impacts of future climate change in ecosystems where no such method currently exists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2005, the Victorian government asked the Victorian Environmental Assessment Council (VEAC) to 1) identify and evaluate the extent, condition, values, management, resources and uses of riverine red gum forests and associated fauna, wetlands, floodplain ecosystems and vegetation communities in northern Victoria; and 2) make recommendations relating to the conservation, protection and ecological sustainable use of public land. The design of a comprehensive, adequate and representative (CAR) reserve system was a key part of the recommendations made by VEAC. In order to assist in the decision-making for environmental water allocation for protected areas and other public land, a process for identifying flood-dependent natural values on the Victorian floodplains of the River Murray and its tributaries was developed.

Although some areas such as the Barmah forest are very well known, there have been few comprehensive inventories of important natural values along the Murray floodplains. For this project, VEAC sought out and compiled data on flood requirements (natural flood frequency, critical interval between floods, minimum duration of floods) for all flood-dependent ecological vegetation classes (EVCs) and threatened species along the Goulburn, Ovens, King and Murray Rivers in Victoria. The project did not include the Kerang Lakes and floodplains of the Avoca, Loddon and Campaspe Rivers. 186 threatened species and 110 EVCs (covering 224,247 ha) were identified as flood-dependent and therefore at risk from insufficient flooding.

Past environmental water allocations have targeted a variety of different natural assets (e.g. stressed red gum trees, colonial nesting waterbirds, various fish species), but consideration of the water requirements of the full suite of floodplain ecosystems and significant species has been limited. By considering the water requirements of the full range of natural assets, the effectiveness of water delivery for biodiversity can be maximised. This approach highlights the species and ecosystems most in need of water and builds on the icon sites approach to view the Murray floodplains as an interconnected system. This project also identified for the first time the flood-frequency and duration requirements for the full suite of floodplain ecosystems and significant species.

This project is the most comprehensive identification of water requirements for natural values on the floodplain to date, and is able to be used immediately to guide prioritisation of environmental watering. As more information on floodplain EVCs and species becomes available, the water requirements and distribution of values can be refined by ecologists and land and water managers. That is, the project is intended as the start of an adaptive process allowing for the incorporation of monitoring and feedback over time. The project makes it possible to transparently and easily communicate the extent to which manipulated or natural flows benefit various natural values. Quantitative and visual outputs such as maps will enable environmental managers and the public to easily see which values do and do not receive water (see http://www.veac.vic.gov.au/riverredgumfinal.htm for further details).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Australian alpine ecosystems are expected to diminish in extent as global warming intensifies. Alpine vegetation patterns are influenced by the duration of snow cover including the presence of snowdrifts in summer, but there is little quantitative information on landscape-scale relationships between vegetation patterns and the frequency of occurrence of persistent summer snowdrifts in the Australian alps. We mapped annual changes in summer snowdrifts in the Kosciuszko alpine region, Australia, from Landsat TM images and modelled the frequency of occurrence of persistent summer snowdrifts from long-term records (1954–2003) of winter snow depth. We then compared vegetation composition and structure among four classes that differed in the frequency of occurrence of persistent summer snowdrifts. We found a curvilinear relationship between annual winter snow depth and the area occupied by persistent snowdrifts in the following summer (r2=0.9756). Only 21 ha (0.42% of study area) was predicted to have supported summer snowdrifts in 80% of the past 50 years, while 440 ha supported persistent summer snow in 10% of years. Mean cover and species richness of vascular plants declined significantly, and species composition varied significantly, as the frequency of summer snow persistence increased. Cushion plants and rushes were most abundant where summer snowdrifts occurred most frequently, and shrubs, grasses and sedges were most abundant in areas that did not support snowdrifts in summer. The results demonstrate strong regional relationships between vegetation composition and structure and the frequency of occurrence of persistent summer snowdrifts. Reductions in winter snow depth due to global warming are expected to lead to substantial reductions in the extent of persistent summer snowdrifts. As a consequence, shrubs, grasses and sedges are predicted to expand at the expense of cushion plants and rushes, reducing landscape vegetation diversity. Fortunately, few vascular plant species (e.g. Ranunculus niphophilus) appear to be totally restricted to areas where summer snow occurs most frequently. The results from this study highlight potential indicator species that could be monitored to assess the effects of global warming on Australian alpine environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim. We characterized changes in reporting rates and abundances of bird species over a period of severe rainfall deficiency and increasing average temperatures. We also measured flowering in eucalypts, which support large numbers of nectarivores characteristic of the region.

Location.  A 30,000-km2 region of northern Victoria, Australia, consisting of limited amounts of remnant native woodlands embedded in largely agricultural landscapes.

Methods. There were three sets of monitoring studies, pitched at regional  (survey programmes in 1995–97, 2004–05 and 2006–08), landscape (2002–03 and 2006–07) and site (1997–2008 continuously) scales. Bird survey techniques used a standard 2-ha, 20-min count method. We used Bayesian analyses of reporting rates to document statistically changes in the avifauna through time at each spatial scale.

Results. Bird populations in the largest remnants of native vegetation (up to 40,000 ha), some of which have been declared as national parks in the past decade, experienced similar declines to those in heavily cleared andscapes. All categories of birds (guilds based on foraging substrate, diet, nest site; relative mobility; geographical distributions) were affected similarly. We detected virtually no bird breeding in the latest survey periods. Eucalypt flowering has declined significantly over the past 12 years of drought.

Main conclusions. Declines in the largest woodland remnants commensurate with those in cleared landscapes suggest that reserve systems may not be relied upon to sustain species under climate change. We attribute population declines to low breeding success due to reduced food. Resilience of bird populations in this woodland system might be increased by active management to enhance habitat quality in existing vegetation and restoration of woodland in the more fertile parts of landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional regression techniques such as ordinary least squares (OLS) are often unable to accurately model spatially varying data and may ignore or hide local variations in model coefficients. A relatively new technique, geographically weighted regression (GWR) has been shown to greatly improve model performance compared to OLS in terms of higher R 2 and lower corrected Akaike information criterion (AICC). GWR models have the potential to improve reliabilities of the identified relationships by reducing spatial autocorrelations and by accounting for local variations and spatial non-stationarity between dependent and independent variables. In this study, GWR was used to examine the relationship between land cover, rainfall and surface water habitat in 149 sub-catchments in a predominately agricultural region covering 2.6 million ha in southeast Australia. The application of the GWR models revealed that the relationships between land cover, rainfall and surface water habitat display significant spatial non-stationarity. GWR showed improvements over analogous OLS models in terms of higher R 2 and lower AICC. The increased explanatory power of GWR was confirmed by the results of an approximate likelihood ratio test, which showed statistically significant improvements over analogous OLS models. The models suggest that the amount of surface water area in the landscape is related to anthropogenic drainage practices enhancing runoff to facilitate intensive agriculture and increased plantation forestry. However, with some key variables not present in our analysis, the strength of this relationship could not be qualified. GWR techniques have the potential to serve as a useful tool for environmental research and management across a broad range of scales for the investigation of spatially varying relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A firm’s ability to be adaptable, entrepreneurial and innovative may assist them to maintain, or achieve competitive advantage. We investigated the relationship between organisational climate and innovation in a consulting firm. Analyses of the 98 returned surveys showed significant relationships between organisational climate subscales of autonomy, worker cohesion and innovation with workplace innovation. Co-worker cohesion and pressure (negatively) predicted organisational innovation. Autonomy, innovation, cohesion and recognition predicted innovation climate. Autonomy and innovation predicted individual innovation while cohesion predicted team innovation. The results of the linear regressions revealed that organisational innovation, was the most significant model emerging, accounting for 40% of the variance. The study concluded that organisational strategies encouraging autonomy and co-worker cohesion were conducive to workplace innovation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To investigate the spatial relationship between climate variability and cryptosporidiosis and giardiasis notifications in New Zealand between 1997 and 2006.

Methods: Negative binomial regression was used to analyse spatial relationships between cryptosporidiosis and giardiasis notifications in New Zealand between 1997 and 2006, and climatological average rainfall and temperature at the Census Area Unit (CAU) level. The quality of domestic water supplies, urban-rural status and deprivation were included as covariates.

Main results: Giardiasis: There was a positive association between rainfall and giardiasis and between temperature and giardiasis.

Cryptosporidiosis: There was a positive association between rainfall and cryptosporidiosis and a negative association between temperature and cryptosporidiosis. The effect of rainfall was modified by the quality of the domestic water supply.

Conclusions: These findings suggest that climate variability affects protozoan disease rates in New Zealand. However, predicting the effect of climate change from this study is difficult, as these results suggest that the projected increases in temperature and rainfall may have opposing effects on cryptosporidiosis rates. Nevertheless, water supply quality appeared to modify the impact of increased rainfall on cryptosporidiosis rates. This finding suggests that improving water supply quality in New Zealand could reduce vulnerability to the impact of climate change on protozoan diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban Sustainability expresses the level of conservation of a city while living a town or consuming its urban resources, but the measurement of urban sustainability depends on what are considered important indicators of conservation besides the permitted levels of consumption in accordance with adopted criteria. This criterion should have common factors that are shared for all the members tested or cities to be evaluated as in this particular case for Abu Dhabi, but also have specific factors that are related to the geographic place, community and culture, that is the measures of urban sustainability specific to a middle east climate, community and culture where GIS Vector and Raster analysis have a role or add a value in urban sustainability measurements or grading are considered herein. Scenarios were tested using various GIS data types to replicate urban history (ten years period), current status and expected future of Abu Dhabi City setting factors to climate, community needs and culture. The useful Vector or Raster GIS data sets that are related to every scenario where selected and analysed in the sense of how and how much it can benefit the urban sustainability ranking in quantity and quality tests, this besides assessing the suitable data nature, type and format, the important topology rules to be considered, the useful attributes to be added, the relationships which should be maintained between data types of a geo- database, and specify its usage in a specific scenario test, then setting weights to each and every data type representing some elements of a phenomenon related to urban suitability factor. The results of assessing the role of GIS analysis provided data collection specifications such as the measures of accuracy reliable to a certain type of GIS functional analysis used in an urban sustainability ranking scenario tests. This paper reflects the prior results of the research that is conducted to test the multidiscipline evaluation of urban sustainability using different indicator metrics, that implement vector GIS Analysis and Raster GIS analysis as basic tools to assist the evaluation and increase of its reliability besides assessing and decomposing it, after which a hypothetical implementation of the chosen evaluation model represented by various scenarios was implemented on the planned urban sustainability factors for a certain period of time to appraise the expected future grade of urban sustainability and come out with advises associated with scenarios for assuring gap filling and relative high urban future sustainability. The results this paper is reflecting are concentrating on the elements of vector and raster GIS analysis that assists the proper urban sustainability grading within the chosen model, the reliability of spatial data collected; analysis selected and resulted spatial information. Starting from selecting some important indicators to comprise the model which include regional culture, climate and community needs an example of what was used is Energy Demand & Consumption (Cooling systems). Thus, this factor is related to the climate and it‟s regional specific as the temperature varies around 30-45 degrees centigrade in city areas, GIS 3D Polygons of building data used to analyse the volume of buildings, attributes „building heights‟, estimate the number of floors from the equation, following energy demand was calculated and consumption for the unit volume, and compared it in scenario with possible sustainable energy supply or using different environmental friendly cooling systems this is followed by calculating the cooling system effects on an area unit selected to be 1 sq. km, combined with the level of greenery area, and open space, as represented by parks polygons, trees polygons, empty areas, pedestrian polygons and road surface area polygons. (initial measures showed that cooling system consumption can be reduced by around 15 -20 % with a well-planned building distributions, proper spaces and with using environmental friendly products and building material, temperature levels were also combined in the scenario extracted from satellite images as interpreted from thermal bands 3 times during the period of assessment. Other examples of the assessment of GIS analysis to urban sustainability took place included Waste Productivity, some effects of greenhouse gases measured by the intensity of road polygons and closeness to dwelling areas, industry areas as defined from land use land cover thematic maps produced from classified satellite images then vectors were created to take part in defining their role within the scenarios. City Noise and light intensity assessment was also investigated, as the region experiences rapid development and noise is magnified due to construction activities, closeness of the airports, and highways. The assessment investigated the measures taken by urban planners to reduce degradation or properly manage it. Finally as a conclusion tables were presented to reflect the scenario results in combination with GIS data types, analysis types, and the level of GIS data reliability to measure the sustainability level of a city related to cultural and regional demands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gunditjmara people developed a socio-economic system based on the modification of wetland ecosystems associated with the Mt Eccles lava flow primarily for sustainable production and management of the highly nutritious shortfin eel (Anguilla australis). This paper examines the environmental history of these landscapes since their inception about 30 000 years ago, through palaeoecological analysis of sediment cores from associated lakes and swamps, in order to contribute to an understanding of the causes and timing of cultural transformation. Two records cover the whole of the 30 000 year history of the landscape while two others provide evidence of change within the Holocene. A great deal of variation within the landscape is revealed, both temporally and spatially, with opportunities for human exploitation through the whole recorded period. Although most features of the records can be explained by natural landscape development and climate change, some human modification can be suggested from around the Pleistocene—Holocene transition while more obvious indications of management relating to eel aquaculture are evident from about 4000 cal. yr BP that appear to include adaptations to the onset of a drier and more variable climate. The study has implications for the explanation of intensification of settlement in Australia more generally within the mid to late Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Aim: We investigated how the probability of burning is influenced by the time since fire (TSF) and gradients of climate, soil and vegetation in the fire-prone mediterranean-climate mallee woodlands of south-eastern Australia. This provided insight into the processes controlling contemporary fuel dynamics and fire regimes across biogeographical boundaries, and the consequent effects of climate change on potential shifts in boundaries between fuel systems and fire regimes, at a subcontinental scale. Location: South-eastern Australia. Methods: A desktop-based GIS was used to generate random sampling points across the study region to collect data on intersecting fire interval, rainfall, vegetation and soil type. We used a Bayesian framework to examine the effects of combinations of rainfall, vegetation and soil type on the hazard-of-burning and survival parameters of the Weibull distribution. These analyses identify the nature of environmental controls on the length of fire intervals and the age-dependence of the hazard of burning. Results: Higher rainfall was consistently associated with shorter fire intervals. Within a single level of rainfall, however, the interaction between soil and vegetation type influenced the length of fire intervals. Higher-fertility sands were associated with shorter fire intervals in grass-dominated communities, whereas lower-fertility sands were associated with shorter fire intervals in shrub-dominated communities. The hazard of burning remained largely independent of TSF across the region, only markedly increasing with TSF in shrub-dominated communities at high rainfall. Main conclusions: Rainfall had a dominant influence on fire frequency in the mediterranean-climate mallee woodlands of south-eastern Australia. Predicted changes in the spatial distribution and amount of rainfall therefore have the potential to drive changes in fire regimes, although the effects of soil fertility and rainfall on fire regimes do not align on a simple productivity gradient. Reduced soil fertility may favour plant traits that increase the rate of woody litter fuel accumulation and flammability, which may alter the overriding influence of rainfall gradients on fire regimes.