2 resultados para Classical methods

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A significant number of biosorption studies on the removal of heavy metal from aqueous solutions have been conducted worldwide. Nearly all of them have been directed towards optimizing biosorption parameters to obtain the highest removal efficiency while the rest of them are concerned with the biosorption mechanism. Combinations of FTIR, SEM-EDX, TEM as well as classical methods such as titrations are extremely useful in determining the main processes on the surfaces of biosorbents. Diverse functional groups represented by carboxyl, hydroxyl, sulfate and amino groups play significant roles in the biosorption process. Solution pH normally has a large impact on biosorption performance. In brief, ion exchange and complexation can be pointed out as the most prevalent mechanisms for the biosorption of most heavy metals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research focuses on surveying in an attractive field of quantum computing. The paper begins by highlighting a brief history of quantum mechanics. Major elements of quantum computing such as quantum superposition, quantum tunnelling and qubits are addressed at next from a physics perspective. In addition, various methods and applications of quantum physics are also examined. This paper discusses the power and efficiencies that a quantum computer provides and the basis for these claims. Furthermore, the level of research in quantum computing and it’s commercial markets assays to find out the major contributions and developments in the field of quantum computing. The top two leading organisations in quantum computing are picked and reviewed with their up to date contributions. This paper expresses the methods and techniques which are being used by these two organisations to implement a quantum processor and the level of success that has been achieved. This research attempts to log the challenges and limitations that these organisations face in the development of quantum computing. Finally, the research compares quantum model with classical computing model.