8 resultados para Civil engineering|Mechanical engineering

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Deakin University graduated its first cohort from four-year undergraduate civil engineering course/program in 2012. The internal annual Course Experience Survey, which has been running annually since 2012, targets to identify the graduating students’ learning approaches and students’ perceptions of the curriculum and teaching quality. Literature suggests that students’ learning outcomes can be achieved more efficiently when the students’ perceptions of curriculum and teaching quality are closely aligned with their learning approaches. Where the students’ approaches to learning and their perception of curriculum and teaching quality are mismatched, a series of frustrations can result for the students that may not only negatively impact their learning achievement but also their learning experience.
PURPOSE OR GOAL: This study explores the relationships between students’ learning approaches and their perception of curriculum and teaching quality in an undergraduate civil engineering program/course. This will help understand whether the curriculum and teaching quality provided by the university have actually accommodated ‘all’ enrolled students in the similar way.
APPROACH: To uncover these relationships, this study adopts questionnaire survey approach to collect response data over a two year period by asking students about their perception through a series of statements. 5-point Likert-scale questionnaire survey (strongly disagree, disagree, neutral, agree, strongly agree) is developed and responses are collected. The responses are then statistically analysed in order to uncover the relationships between students’ learning approaches and their perception of curriculum and teaching quality provided by the university.
DISCUSSION: Deep learners and surface learners had a statistically different perception of curriculum and teaching quality. These results contradict the assumption that learners will have uniform preferences on the curriculum, teaching quality and the way they deal with the demands of specific learning situations. Anecdotal belief that ‘good course/program curriculum and good teaching approaches are good for all students and vice-versa’ may not be strictly true for contemporary heterogeneous student cohorts.
RECOMMENDATIONS/IMPLICATIONS/CONCLUSION: This finding highlights the challenge for curriculum designer to design appropriate course curriculum and teaching staff to implement efficient teaching strategies that benefit both surface and deep learners, who are usually enrolled together. It may be beneficial to provide diversity and flexibility in the curriculum and teaching approaches (rather than a uniform approach). However, this may demand additional resources and may also be questioned for equity and consistency of education. It is also important to note that due to relatively a small dataset, these results may not be generalised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUNDUndergraduate Civil Engineering Course at Deakin University, Australia is relatively a new course. It graduated its second main cohort in 2013. Since its beginning in 2012, this study has been running an internal annual Course Experience Surveys targeted at uncovering the graduating students’ perceptions on three components of contemporary learning system provided by Deakin University learning design, learning environment and the human factor. Learning design covers the learning curriculum, learning resources, learning activities and learning supports; learning environment includes physical environment, virtual environment and psychosocial environment; and human factor includes learners, facilitators/teachers and help/support staff and their culture. There is a common agreement among educators in higher education that these three components of learning system should interact and complement each other in order to maximise student learning. This paper coversonly learning design aspect of the overall surveys from 2012 and 2013.PURPOSEThe aim of this study is to analyse the students’ perceptions of learning design provided by Deakin University to its undergraduate civil engineering students in 2012 and 2013. This will help track down the progresses in different aspects of learning design and to understand whether the learning design provided by the institution have actually helped students in their learning and met their learning expectations.DESIGN/METHODThis study adopts questionnaire approach to collect original data by asking students about their perceptions of learning design provided by the institution. 5-point Likert-scale questionnaire survey (strongly disagree, disagree, neutral, agree, strongly agree) is developed and responses are collected. The responses are then statistically analysed in order to uncover the students’ perceptions of learning design provided by the university.RESULTSThe statistical analysis shows that the graduating students in both 2012 and 2013 did not perceive some important aspects of the learning design of the undergraduate civil engineering program/course as good as they expected. Moreover, in line with the shift in the learning design paradigm from content-centric to more inclusive learning design where soft skills, self-directed learning skills and research skills are incorporated, graduating students clearly perceived these changes. However, respondents’ perceptions on some components of learning design got slightly down in 2013 compared with 2012 particularly the ‘learning resources’, ‘learning activities’ and ‘learning supports’.CONCLUSIONSThe shift in the learning design paradigm of the undergraduate civil engineering program/course at Deakin University from teacher-centric to student-centric between 2012 and 2013 has not been perceived by students positively as expected. Students have clearly indicated that they prefer improved curriculum, quality learning resources, customised learning activities and additional learning supports in order to successfully implement student-centric learning design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT
This paper addresses the strain ageing effects on the mechanical properties of the partially damaged structural mild steel. Since repairing partly damaged structures may not occur immediately, the strain ageing effect can significantly influence the structural behaviour. The changes due to this effect have not so far been considered in the civil engineering design guidelines. In order to investigate strain ageing effects, two-stage experimental tests are carried out on the mild-steel specimens. In the first stage, partial damage is made using quasi-static loading. During the second stage, the strength and ductility of the specimens are examined after 2 and 7 days ‘ageing’ at room temperature and the results are compared with the corresponding no-age samples. The microstructure of the specimens is examined using scanning electron microscopy (SEM). To illustrate the effect of strain ageing on the global behaviour of steel structures, a numerical example is provided in which strain ageing impacts on loading capacity and deflection of a steel beam. Finally, the stress–strain relation of partially damaged mild-steel material incorporating strain ageing effects is expressed by calibrating the parameters of Ramberg–Osgood model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental investigation of coir mesh reinforced mortar (CMRM) is conducted using nonwoven coir mesh matting. The main parameters in this study are the fiber volume fraction (number of mesh layers) and fiber surface treatment with a wetting agent. The composites are subjected to the four-point bending test. The short-term mechanical properties of CMRM are discussed. Scanning electron micrograph analysis is used to observe the fiber—matrix interfacial characteristics. The results indicate that the addition of coir mesh to mortar significantly improves the composite post-cracking flexural stress, toughness, ductility, and toughness index, compared to plain mortar materials. The Albatex © FFC wetting agent (2-ethylhexanol) can effectively improve water absorption of coir fiber and enhance the fiber—matrix bonding strength. These coir mesh reinforced composites may be useful in civil engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite Element (FE) model updating has been attracting research attentions in structural engineering fields for over 20 years. Its immense importance to the design, construction and maintenance of civil and mechanical structures has been highly recognised. However, many sources of uncertainties may affect the updating results. These uncertainties may be caused by FE modelling errors, measurement noises, signal processing techniques, and so on. Therefore, research efforts on model updating have been focusing on tackling with uncertainties for a long time. Recently, a new type of evolutionary algorithms has been developed to address uncertainty problems, known as Estimation of Distribution Algorithms (EDAs). EDAs are evolutionary algorithms based on estimation and sampling from probabilistic models and able to overcome some of the drawbacks exhibited by traditional genetic algorithms (GAs). In this paper, a numerical steel simple beam is constructed in commercial software ANSYS. The various damage scenarios are simulated and EDAs are employed to identify damages via FE model updating process. The results show that the performances of EDAs for model updating are efficient and reliable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electroactive polymers have attracted considerable attention in recent years due to their sensing and actuating properties which make them a material of choice for a wide range of applications including sensors, biomimetic robots, and biomedical micro devices. This paper presents an effective modeling strategy for nonlinear large deformation (small strains and moderate rotations) dynamic analysis of polymer actuators. Considering that the complicated electro-chemo-mechanical dynamics of these actuators is a drawback for their application in functional devices, establishing a mathematical model which can effectively predict the actuator's dynamic behavior can be of paramount importance. To effectively predict the actuator's dynamic behavior, a comprehensive mathematical model is proposed correlating the input voltage and the output bending displacement of polymer actuators. The proposed model, which is based on the rigid finite element (RFE) method, consists of two parts, namely electrical and mechanical models. The former is comprised of a ladder network of discrete resistive-capacitive components similar to the network used to model transmission lines, while the latter describes the actuator as a system of rigid links connected by spring-damping elements (sdes). Both electrical and mechanical components are validated through experimental results.