5 resultados para Citrus L.

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bacterial strain, MAK-2, was isolated as a producer of α-l-rhamnosidase from a soil sample of Dehradoon, India. The strain was identified based on morphology, physiological tests and 16S rDNA analysis. The phylogenetic analysis based on the 16S rDNA sequence, identified the isolate as Staphylococcus xylosus, a nonpathogenic member of CNS (coagulase-negative staphylococci) family. The strain was capable of producing α-l-rhamnosidase by hydrolysing flavonoids thus confirming potential application in the citrus-processing industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus xylosus MAK2, Gram-positive coccus, a nonpathogenic member of the coagulase-negative Staphylococcus family was isolated from soil and used to produce naringinase in a stirred tank reactor. An initial medium at pH 5.5 and a cultivation temperature of 30°C was found to be optimal for enzyme production. The addition of Ca+2 caused stimulation of enzyme activity. The effect of various physico-chemical parameters, such as pH, temperature, agitation, and inducer concentration was studied. The enzyme production was enhanced by the addition of citrus peel powder (CPP) in the optimized medium. A twofold increase in naringinase production was achieved using different technological combinations. The process optimization using technological combinations allowed rapid optimization of large number of variables, which significantly improved enzyme production in a 5-l reactor in 34 h. An increase in sugar concentration (15 gl<sup>-1) in the fermentation medium further increased naringinase production (8.9 IUml<sup>-1) in the bioreactor. Thus, availability of naringinase renders it attractive for potential biotechnological applications in citrus processing industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The citrus fruit processing industry generates substantial quantities of waste rich in phenolic substances, which is a valuable natural source of polyphenols (flavonoids) such as naringin and its disposal is becoming a major problem. In the US alone, the juice processing of oranges and grapefruit generates over 5 Mt of citrus waste every year. In the case of India, about 2.15 Mt of citrus peel out of 6.28 Mt of citrus fruits are produced yearly from citrus juice processing. In case of Australia, about 15-40% of citrus peel waste is generated by processing of citrus fruit (0.85 Mt). Thus Isolation of functional compounds (mostly flavanoids) and their further processing can be of interest to the food and pharmaceutical industry. This peel is rich in naringin and may be used for rhamnose production by utilizing &alpha;-L-rhamnosidase (EC 3.2.1.40), an enzyme that catalyzes the cleavage of terminal rhamnosyl groups from naringin to yield prunin and rhamnose. We recently purified recombinant &alpha;-L-rhamnosidase from E. coli cells using immobilized metal-chelate affinity chromatography (IMAC) and used it for naringin hydrolysis. The purified enzyme established hydrolysis of naringin extracted from citrus peel and thus endorses its industrial applicability for producing rhamnose. Infrared (IR) spectroscopy confirmed molecular characteristics of naringin extracted from citrus peel waste.