4 resultados para Chrysaora lactea

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is becoming increasingly evident that jellyfish (Cnidaria: Scyphozoa) play an important role within marine ecosystems, yet our knowledge of their seasonality and reproductive strategies is far from complete. Here, we explore a number of life history hypotheses for three common, yet poorly understood scyphozoan jellyfish (Rhizostoma octopus; Chrysaora hysoscella; Cyanea capillata) found throughout the Irish and Celtic Seas. Specifically, we tested whether (1) the bell diameter/wet weight of stranded medusae increased over time in a manner that suggested a single synchronised reproductive cohort; or (2) whether the range of sizes/weights remained broad throughout the stranding period suggesting the protracted release of ephyrae over many months. Stranding data were collected at five sites between 2003 and 2006 (n = 431 surveys; n = 2401 jellyfish). The relationship between bell diameter and wet weight was determined for each species (using fresh specimens collected at sea) so that estimates of wet weight could also be made for stranded individuals. For each species, the broad size and weight ranges of stranded jellyfish implied that the release of ephyrae may be protracted (albeit to different extents) in each species, with individuals of all sizes present in the water column during the summer months. For R. octopus, there was a general increase in both mean bell diameter and wet weight from January through to June which was driven by an increase in the variance and overall range of both variables during the summer. Lastly, we provide further evidence that rhizostome jellyfish may over-wintering as pelagic medusa which we hypothesise may enable them to capitalise on prey available earlier in the year.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we provide baseline data on the distribution and abundance of Mola mola within the Irish and Celtic Seas, made during aerial surveys from June to October during 2003–2005. These data were considered in conjunction with concurrent observations of three potential jellyfish prey species found throughout the region: Rhizostoma octopus, Chrysaora hysoscella and Cyanea capillata. A total area of 7850 km2 was surveyed over the three years with an observed abundance of 68 sunfish giving a density of 0.98 ind/100 km2. Although modest, these findings highlight that the species is more common than once thought around Britain and Ireland and an order of magnitude greater than the other apex jellyfish predator found in the region, the leatherback turtle (Dermochelys coriacea). Furthermore, the distribution of sunfish sightings was inconsistent with the extensive aggregations of Rhizostoma octopus found throughout the study area. The modelled distributions of predator–prey co-occurrence (using data for all three jellyfish species) was less than the observed co-occurrence with the implication that neither jellyfish nor sunfish were randomly distributed but co-occurred more in the same areas than expected by chance. Finally, observed sunfish were typically small ([similar]1 m or less) and seen to either bask or actively swim at the surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the marine environment, aerial surveys have historically centred on apex predators, such as pinnipeds, cetaceans and sea birds. However, it is becoming increasingly apparent that the utility of this technique may also extend to subsurface species such as pre-spawning fish stocks and aggregations of jellyfish that occur close to the surface. In light of this, we tested the utility of aerial surveys to provide baseline data for 3 poorly understood scyphozoan jellyfish found throughout British and Irish waters: Rhizostoma octopus, Cyanea capillata and Chrysaora hysoscella. Our principal objectives were to develop a simple sampling protocol to identify and quantify surface aggregations, assess their consistency in space and time, and consider the overall applicability of this technique to the study of gelatinous zooplankton. This approach provided a general understanding of range and relative abundance for each target species, with greatest suitability to the study of R. octopus. For this species it was possible to identify and monitor extensive, temporally consistent and previously undocumented aggregations throughout the Irish Sea, an area spanning thousands of square kilometres. This finding has pronounced implications for ecologists and fisheries managers alike and, moreover, draws attention to the broad utility of aerial surveys for the study of gelatinous aggregations beyond the range of conventional ship-based techniques.