25 resultados para Chemical-Reactions

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An array of experimental and computational methods has been implement to elucidate the mechanisms of light producing chemical reactions that are important in nature and the laboratory.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis encompasses a series of investigations into the fundamental chemistry and spectroscopy of chemiluminescence (chemical reactions that produce light). This new knowledge enabled the development of innovative analytical methodologies for rapid chemical measurements in forensic science, industrial process monitoring and clinical diagnostics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chemical reactions between certain bis-cyclometalated iridium complexes, cerium(IV) and organic reducing agents in aqueous solution produce an emission of light which in some cases is more intense than that from analogous reactions with conventional ruthenium-based reagents, thus providing a new avenue for chemically-initiated luminescence detection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reports on a pedagogical approach to the teaching of chemical equations introduced to first year university students with little previous chemical knowledge. During the instruction period students had to interpret and construct diagrams of reactions at the submicro level, and relate them to chemical equations at the symbolic level with the aim of improving their conceptual understanding of chemical equations and stoichiometry. Students received instruction in symbol conventions, practice through graded tutorial tasks, and feedback on their efforts over the semester. Analysis of the student responses to formative test and summative exam items over consecutive years indicates that there was a consistent improvement in the abilities of the various cohorts to answer stoichiometry questions correctly. The responses provide evidence for diagrams of the submicro level being used as tools for reasoning in solving chemical problems, to recognise misconceptions of chemical formulae and to recognise the value of using various multiple representations of chemical reactions connecting the submicro and symbolic levels of representation. The student-generated submicro diagrams serve as a visualisation tool for teaching and learning abstract concepts in solving stoichiometric problems. We argue that the use of diagrams of the submicro level provides a more complete picture of the reaction, rather than a net summary of a chemical equation, leading to a deeper conceptual understanding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pulse of chromated copper arsenate (CCA, a timber preservative) was applied in irrigation water to an undisturbed field soil in a laboratory column. Concentrations of various elements in the leachate from the column were measured during the experiment. Also, the remnants within the soil were measured at the end of the experiment. The geochemical modelling package, PHREEQC-2, was used to simulate the experimental data. Processes included in the CCA transport modelling were advection, dispersion, non-specific adsorption (cation exchange) and specific adsorption by clay minerals and organic matter, as well as other possible chemical reactions such as precipitation/dissolution. The modelling effort highlighted the possible complexities in CCA transport and reaction experiments. For example, the uneven dosing of CCA as well as incomplete knowledge of the soil properties resulted in simulations that gave only partial, although reasonable, agreement with the experimental data. Both the experimental data and simulations show that As and Cu are strongly adsorbed and therefore, will mostly remain at the top of the soil profile, with a small proportion appearing in leachate. On the other hand, Cr is more mobile and thus it is present in the soil column leachate. Further simulations show that both the quantity of CCA added to the soil and the pH of the irrigation water will influence CCA transport. Simulations suggest that application of larger doses of CCA to the soil will result in higher leachate concentrations, especially for Cu and As. Irrigation water with a lower pH will dramatically increase leaching of Cu. These results indicate that acidic rainfall or significant accidental spillage of CCA will increase the risk of groundwater pollution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A sequential injection analysis procedure with dual-reagent chemiluminescence detection was applied to the screening of street drug seizure samples for the presence of heroin. The chemiluminescence reagents (acidic potassium permanganate and tris(2,2′-bipyridine)ruthenium(III)) were aspirated from either side of a sample aliquot that was sufficiently large to prevent interdispersion of the reagent zones, and therefore two different chemical reactions could be performed simultaneously at either end of the sample zone. The presence of heroin in seizure samples was indicated by a strong response with the tris(2,2′-bipyridine)ruthenium(III) reagent and confirmed by a significant increase in the response with the permanganate reagent when the sample was treated with sodium hydroxide to hydrolyse the heroin to morphine. Nicomorphine (a morphine-derived pharmaceutical) was synthesised and tested under the same conditions. The responses with the permanganate reagent were similar to those for heroin, which supports the proposed chemical basis for the test. However, the responses with tris(2,2′-bipyridine)ruthenium(III) were far lower for nicomorphine than heroin (approximately 5-fold for the samples that had not been hydrolysed).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The activation of chemical reactions by milling reactants in a ball mill is presented here as a novel, low cost method for the synthesis of wide range of nanopowders with mean particle sizes as small as 4 nm. The factors controlling such mechanochemical reactions are discussed with respect to their influence on particle size, size distribution, and dispersion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An understanding of the rate and the mechanism of reaction is of fundamental importance in the many facets of chemistry. Electrochemical systems are further complicated by the heterogeneous boundary, between the solution and the electrode, that the electron passes through before any electrochemical reaction can take place. This thesis concerns the development of methods for analysing electrode kinetics. One part involves the further development of the Global Analysis procedure to include electrodes with a spherical geometry which are traditionally the most popular form of electrodes. Simulated data is analysed to ascertain the accuracy of the procedure and then the known artifacts of uncompensated solution resistance and charging current are added to the simulated data so that the effects can be observed. The experimental analysis of 2-methyl-2-nitropropane is undertaken and comparisons are made with the Marcus-Hush electrochemical theories concerning electrode kinetics. A related section explores procedures for the kinetic analysis of steady state voltammetric data obtained at microdisc electrodes. A method is proposed under the name of Normalised Steady State Voltammetry and is tested using data obtained from a Fast Quasi-Explicit Finite Difference simulation of diffusion to a microdisc electrode. In a second area of work using microelectrodes, the electrochemical behaviour of compounds of the general formula M(CO)3(η3 - P2P1) where M is either Cr, Mo or W and P2P' is bis(2-diphenylphosphinoethyl)phenylphosphine) is elucidated. The development of instrumentation and mathematical procedures relevant to the measurement and quantitation of these systems is also investigated. The tungsten compound represents the first examples where the 17-electronfac+ and mer+ isomers are of comparable stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Air-atomised pure aluminium powder with additions of 10 at.% of AgO, PtO2 or PdO was mechanically alloyed (MAed) by using a vibrational ball mill, and MAed powders were consolidated into bulk materials by a spark plasma sintering (SPS) process. Mechano-chemical reactions among pure Al, precious metal oxide and stearic acid, added as a process control agent, during the mechanical alloying (MA) process and subsequent heat treatments were investigated by X-ray diffraction. The mechanical properties of MAed powders obtained under various heat treatment conditions and those of the SPS materials were evaluated by hardness tests. Mechano-chemical reactions occurred in Al/precious metal oxide composite powders during 36 ks of the MA process to form AlAg2, Pt and Al3Pd2 for the Al-AgO, Al-PtO2 and Al-PdO systems, respectively. Further solid-state reactions in MAed powders have been observed after heating at 373 K to 873 K for 7.2 ks. The hardness of MAed powders initially increased significantly after heating at 373 K and then generally decreased with increasing heating temperatures. The full density was obtained for the SPS materials under the conditions of an applied pressure of 49 MPa at 873 K for 3.6 ks. All the SPS materials exhibited hardness values of over 200 HV in the as-fabricated state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Membranes are the most common cellular structures in both plants and animals. They are now recognized as being involved in almost all aspects of cellular activity ranging from motility and food entrapment in simple unicellular organisms, to energy transduction, immunorecognition, nerve conduction and biosynthesis in plants and higher organisms. This functional diversity is reflected in the wide variety of lipids and particularly of proteins that compose different membranes. An understanding of the physical principles that govern the molecular organization of membranes is essential for an understanding of their physiological roles since structure and function are much more interdependent in membranes than in, say, simple chemical reactions in solution. We must recognize, however, that the word ‘understanding’ means different things in different disciplines, and nowhere is this more apparent than in this multidisciplinary area where biology, chemistry and physics meet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graphitic carbon nitride (g-C3N4) has been synthesized via a two-step pyrolysis of melamine (C3H6N6) at 800°C for 2 h under vacuum conditions. X-ray diffraction (XRD) patterns strongly indicate that the synthesized sample is g-C3N4. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) morphologies indicate that the product is mainly composed of graphitic carbon nitride. The stoichiometric ratio of C:N is determined to be 0.72 by elemental analysis (EA). Chemical bonding of the sample has been investigated by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Electron energy loss spectroscopy (EELS) verifies the bonding state between carbon and nitrogen atoms. Optical properties of the g-C3N4 were investigated by PL (photoluminescence) measurements and UV–Vis (ultraviolet–visible) absorption spectra. We suppose its luminescent properties may have potential application as component of optical nanoscale devices. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were also performed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic liquid marbles, an encapsulation of liquid droplet with hydrophobic magnetic particles, show remarkable responsiveness to external magnetic force and great potential to be used as a discrete droplet microfluidic system. In this study, we presented the manipulation of a magnetic liquid marble under an external magnetic field and calculated the maximum frictional force, the magnetic force required for actuating the liquid marbles and the effective surface tension of the magnetic liquid marble, as well as the threshold volume for the transition from quasi-spherical to puddle-like shape. By taking advantage of the unique feature of being opened and closed reversibly, we have proven the encapsulated droplets can be detected optically with a reflection-mode probe. Combining the open-close and optical detection also enables to probe chemical reactions taking place within liquid marbles. These remarkable features offer a simple yet powerful alternative to conventional discrete microfluidic systems and may have wide applications in biomedical and drug discovery. © 2012 The Author(s).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that the gas–solid system plays a significant role in many industrial processes. It is a complex physical and chemical process, generally consisting of heat transfer, mass transfer, species diffusion, and chemical reactions. In this paper, the reaction of methane with air at a low air factor and the gas flow in a fluidized bed with 0.1 mm solid particles are computationally simulated to enable the study of the effect of the inert particles on the species diffusion and the chemical reactions. The reaction of methane and air is modeled by a two-step reaction mechanism that produces a continuous fluid phase composed of six gases (CH4, CO, O2, CO2, H2O, and N2) and discrete solid particles in the reactor. The simulation results are compared with experiment and show that the finite rate model and the eddy dissipation model can well describe the reactions of gases in high-density gas–solid systems. The distribution of each gas and the particle behaviors are analyzed for incomplete combustion at different concentrations of loaded solid particles. The inert particles change the reactions by enhancing both the chemical kinetics and the species diffusion dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

 Knowledge of the degree of hydration of cement pastes is critical for determining properties such as the durability of concrete. As part of an integrated study on the prediction of chloride ingress in reinforced concrete, synchrotron Xray powder diffraction was used to estimate the degree of hydration of cement pastes. While for the past 20 years the composition of Portland cement has been determined by Rietveld analysis of X-ray diffraction, nevertheless there are a number of factors, including the amorphous content of the cement and relative proportion of mineral polymorphs present in the initial clinker, whose impact on the analysis are still not completely understood. Analysis of the resulting diffraction patterns indicated enhanced identification of polymorphs of alite, belite, ferrite and aluminate, which are present in the initial unhydrated cement and clinker, as well as improved quantification of hydrated crystalline phases such as calcium hydroxide and ettringite, which are key phases determining the speed of the chemical reactions in cement. In this paper we describe the experience that we have gained in the determination of the degree of hydration of cement pastes. We detail the standards and precautions that we took to characterize production cements and their hydration products.