17 resultados para Chemical oxygen demand removals

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mean oxygen consumption and simultaneous ventilation frequency of nine non-reproductive brown long-eared bats (body mass 8.53–13.33 g) were measured on 159 occasions. Ambient (chamber) temperature at which the measurements were made ranged from 10.8 to 41.1°C. Apneic ventilation occurred in 22 of the 59 measurements made when mean oxygen consumption was less than 0.5 ml·min-1. No records of apneic ventilation were obtained when it was over 0.5 ml·min-1. The relationship between ventilation frequency and mean oxygen consumption depended on whether ventilation was apneic or non-apneic. When ventilation was non-apneic the relationship was positive and log-linear. When ventilation was apneic the relationship was log-log. Within the thermoneutral zone ventilation frequency was not significantly different from that predicted from allometric equations for a terrestrial mammal of equivalent body mass, but was significantly greater than that predicted for a bird. A reduction in the amount of oxygen consumed per breath occurred at ambient temperatures above the upper critical temperature (39°C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of laboratory-scale attached growth (AG) and suspended growth (SG) membrane bioreactors (MBRs) was evaluated in treating synthetic wastewater simulating high strength domestic wastewater. This study investigated the influence of sponge suspended carriers in AG-MBR system, occupying 15% reactor volume, on the removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP), and compared it to that of SG-MBR. Results showed that the removal efficiencies of COD, TN and TP in AG-MBR were 98%, 89% and 58%, respectively as compared to 98%, 74% and 38%, respectively in SG-MBR. Improved TN removal in AG-MBR systems was primarily based on simultaneous nitrification and denitrification (SND) process. These results infer that the presence of small bio-particles having higher microbial activity and the growth of complex biomass captured within the suspended sponge carriers resulted in improved TN and TP removal in AG-MBR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wet textile colouration has the highest environmental impact of all textile processing steps. It consumes water, chemicals and energy and produces liquid, heat and gas waste streams. Liquid effluent streams are often quite toxic to the environment. There are a number of different dyeing processes, normally fibre type specific, and each has a different impact on the environment. This research investigated the energy, chemical and water requirements for the exhaust colouration of cotton, wool, polyester and nylon. The research investigated the liquid waste biological and chemical oxygen demand, salinity, pH and colour along with the energy required for drying after colouration. Polyester fibres had the lowest impact on the environment with lowest water and energy consumption in dyeing, good dye bath exhaustion, the lowest salinity levels in their effluent, relatively neutral pH effluent and low energy in drying. The wool and nylon had similar dye bath requirements and outputs however the nylon could be dyed at far lower liquor ratios and hence provided better energy and water use figures. The cotton and wool required high energy consumption in drying after colouration. Cotton performed poorly in all of the measured parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reverse osmosis (RO) is the most preferable process for water recovery from secondary effluent (SE) because of its higher rejection of impurities with lower associated cost and higher quality of product. Fouling still is a major challenge during the water recovery due to higher contaminant loadings in SE and high rejection capability of this membrane. The presence of suspended solids, colloidal and organic matters, and high level of biological activities in SE further elevate fouling potentiality. This review was performed to identify major foulants causing hindrance in sustainable application of reverse osmosis and to present available pre-treatment options for these foulants. There are four fouling types present in RO namely; bio-fouling, inorganic/scaling, organic, and particulate fouling. Among them; bio-fouling is less understood but dominant since the pre-treatment options are not well developed. Other fouling mechanisms have been overcome by well developed pre-treatments. The major foulants for RO are dissolved and macromolecular organic substances, sparingly soluble inorganic compounds, colloidal and suspended particles, and micro-organisms. Some of these potential fouling water quality parameters (PFWQPs) are interrelated with each others such as electrical conductivity is a surrogate measure of total dissolved solids with established stable relationship. Most of these PFWQPs such as total suspended solids, turbidity, chemical oxygen demand can be removed by conventional pre-treatment; some such as colloidal particles and micro-organisms by modern options and even others such as endocrine disrupting compounds, pharmaceutical and personal care products are still challenging for current pre-treatments. These foulants need to be identified properly to integrate appropriate pre-treatments for minimizing fouling potentiality to increase water recovery at minimal costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of new metal (M) dithiolene complexes bearing terthiophene (3, 12, M = Ni; 4, M = Pd; 5, 6, M = Au) and 2,5-bis(para-methoxyphenyl)thiophene units (14, M = Ni; 15, 16, M = Au; 17, M = Pd) have been synthesised in 38–99% yield. The electrochemical properties of the materials have been characterised by cyclic voltammetry and UV-vis spectroelectrochemistry. The nickel complexes possess low oxidation potentials (−0.12 to −0.25 V vs Ag/AgCl) due to the electron-rich dithiolene centres and all complexes display ligand-based redox activity. The terthiophene derivatives have been polymerised by electrochemical oxidation to give stable films with, in the case of poly(3), broad absorption characteristics. Charge transfer materials have been isolated from 14 and 16 with conductivities in the range 9 × 10−6 to 7 × 10−8 S cm−1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced treatment of secondary wastewater generally has been achieved using polymeric microfiltration and ultrafiltration membranes. Newly developed ceramic membranes offer distinctive advantages over the currently employed membranes and were recently introduced for the purpose. This paper presents results of a pilot study designed to investigate the application of ceramic microfiltration (MF) and ultrafiltration (UF) membranes in the recovery of water from secondary wastewater. Synthetic wastewater similar to the quality of secondary treated wastewater was fed to ceramic MF and UF system in a cross-flow mode. The filtration experiments revealed that the flux recovery through tubular ceramic MF membrane was more sensitive to the variation in TMP compared with the tubular ceramic UF membrane over the range of TMP studied. The resistance in series model was used for the evaluation of the resistance to the permeate flux. The results revealed that for ceramic UF membrane, the contribution to the total resistance of fouling was higher than the inherent of the clean membrane resistance. However, both the clean membrane resistance and the fouling resistance contribute equally in the case of MF membrane. Various wastewater indices were measured to evaluate the effectiveness of the filtration treatment. The ceramic UF membrane consistently met water quality in the permeate in terms of colour, turbidity, chemical oxygen demand and absorbance, suggesting that the permeate water could be made to be reused or recycled for suitable purposes. However, MF membrane appeared to be incompetent with respect to the removal of colour. The unified membrane fouling index (UMFI) was used to measure the fouling potential of both the membranes. The result showed that for UF membrane, the value of UMFI is one order of magnitude higher than MF membrane. The overall results suggest that there were significant differences in the performance of both the ceramic UF and MF membranes that are likely to impact on the operation and maintenance of the membrane system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe(2+) dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study characterizes the extracellular polymeric substances and bacterial community composition of aerobic granules exposed to cefalexin (CLX). The presence of CLX potentially decreases granular stabilities, resulting in a lowered granule diameter. Chemical oxygen demand and NH4+-N removal efficiencies were slightly decreased and the denitrification process was inhibited with CLX addition. Extracellular polymeric substance contents were significantly increased in aerobic granules exposed to CLX. The shifts of fluorescence intensities and peak locations in 3D-EEM fluorescence spectra indicated changes of EPS components. High-throughput sequencing analysis showed aerobic granules with CLX addition in synthetic wastewater had superior diversity of microbial species, and this was the reason that the level and components of EPS changed. The species richness for bacteria was increased from 341 to 352, which was revealed by Chao1. The Shannon index of diversity rose slightly from 3.59 to 3.73 with CLX addition. The abundance of Proteobacteria significantly decreased, while the abundance of Bacteroidetes and Chloroflexi underwent a highly significant increase in aerobic granules exposed to CLX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using cement-based material as a matrix for photocatalytic hybrids is an important development for the large-scale application of photocatalytic technologies. In this work, photocatalytic activity of nanosized hybrids of TiO2/SiO2 (nano-TiO2-SiO2) for degradation of some organic dyes on cementitious materials was highlighted. For this purpose, an optimal inorganic sol-gel precursor was firstly applied to prepare the composites of nano-TiO2-SiO2 which was characterized by XRD, SEM and UV-Vis. Then, a thin layer was successfully coated on white Portland cement (WPC) blocks using a dipping process in a nano-TiO2-SiO2 solution. The effect of nano-TiO2-SiO2-coated WPC blocks on photocatalytic decomposition of three dyes, including Malachite green oxalate (MG), Methylene blue (MB) and Methyl orange (MO) were studied under UV irradiation and monitored by chemical oxygen demand tests. The results showed an increase in photocatalytic effects which depends on the structure and pH of the applied cement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments were carried out on an intermittent estuary during its closed (summer) and open (winter) states to identify the physical processes responsible for vertical mixing across the halocline, and to quantify vertical fluxes of oxygen and salt between water layers. During the blocked phase a two-layer structure was observed, with a brackish surface layer overlying old seawater. Within a deep basin the wind-driven turbulent mixing was consistent with the measured surface-layer turbulent dissipation, but the dissipation in the bottom layer appeared to be driven by internal seiching. In the shallow regions of the estuary vertical fluxes of dissolved oxygen were indicative of oxygen demand by respiration and remineralization of organic material in bottom water and sediments. During the estuary's open phase a three-layer structure was observed, having a fresh, river-derived surface layer, a middle layer of new seawater, and a bottom layer of old seawater. In the shallower regions surface-layer turbulent diffusion was consistent with the strong, gusty winds experienced at the time. The dissolved oxygen of the incoming seawater decreased to very low values by the time it reached the upstream deep basin as a result of the low cross-pycnocline oxygen flux being unable to compensate for the oxygen utilization. At least 50 % of the cross-pycnocline salt fluxes in the shallow reaches of the open estuary are suggested to be driven by Holmboe instabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wet textile colouration has the highest environmental impact of all textile processing steps. It consumes water, chemicals and energy and produces liquid, heat and gas waste streams. Liquid effluent streams are often quite toxic to the environment. There are a number of different dyeing processes, normally fibre type specific, and each has a different impact on the environment. This research investigated the energy, chemical and water requirements for the exhaust colouration of cotton, wool, polyester and nylon. The research investigated the liquid waste biological oxygen demand, total organic carbon dissolved solids, suspended solids, pH and colour along with the energy required for drying after colouration. Polyester fibres had the lowest impact on the environment with low water and energy consumption in dyeing, good dye bath exhaustion, the lowest dissolved solids levels in waste water, relatively neutral pH effluent and low energy in drying. The wool and nylon had similar dyebath requirements and outputs however the nylon could be dyed at far lower liquor ratios and hence provided better energy and water use figures. Cotton performed badly in all of the measured parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lake Pertobe wetland system is a semi-natural wetland that has been modified primarily for recreational use. However, this lake system receives stormwater from much of the central business district of Warrnambool City (Victoria, Australia) and serves as a buffer zone between the stormwater system and the Merri River and Merri Marine Sanctuary. This work considers the impact of stormwater inputs on Lake Pertobe and the effectiveness of the lake in protecting the associated marine sanctuary. Sediment contaminants (including heavy metals and polycyclic aromatic hydrocarbons (PAHs)) and water quality parameters within the lake, groundwater and stormwater system were measured. Water quality parameters were highly variable between stormwater drains and rain events. Suspended solids rapidly settled along open drains and shortly after entering the lake. Groundwater inputs increased both salinity and dissolved nitrogen in some stormwater drains. Some evidence of bioaccumulation of metals in the food chain was identified and sediment concentrations of several PAHs were very high. The lake acted as a sink for PAHs and some metals and reductions in Escherichia coli, biological oxygen demand and total phosphorus were observed, affording some protection to the associated marine sanctuary. Nutrient retention was inadequate overall and it was identified that managing the lake primarily as a recreational facility impacted on the effectiveness of stormwater treatment in the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of on-site sewage management systems in Australia fail to perform to expectations. About 60% to 80% of on-site systems reportedly fail to produce acceptable effluent quality, and there is an increaed concern about the risks associated with public health and environmental pollution. In Victoria, a large proportion of septic tank installations have been reported to discharge highly polluted waste to drains and streams. Users, often considered by regulators as operators, have to bear the costs of upgrade/replacement of their old systems to meet stringent water quality guidelines. Some of the common problems include clogging of the disposal fields due to solids and organic overloading and surfacing of highly polluted effluent. Large land application area is subsequently required for irrigating the effluent and/or installation of upgraded disposal fields.
This paper investigates the effectiveness of various types of textile and plastic media, in polishing primary tank effluent, downstream from a typical two-compartment septic tank system. Results to date show that high biochemical oxygen demand removal rates are achieved from the textile and plastic media (up to 86% and 83% respectively). At these removal levels, the performance of a combined conventional septic tank system and plastic/textile filters is comparable to that of an advanced aerated wastewater treatment system. This approach, subject to further investigation, could provide a less costly upgrade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of the present study was to profile the aerobic and anaerobic energy system contribution during high-speed treadmill exercise that simulated 200-, 400-, 800-, and 1500-m track running events.

Methods: Twenty highly trained athletes (Australian National Standard) participated in the study, specializing in either the 200-m (N = 3), 400-m (N = 6), 800-m (N = 5), or 1500-m (N = 6) event (mean O2 peak [mL·kg-1·min-1] ± SD = 56 ± 2, 59 ± 1, 67 ± 1, and 72 ± 2, respectively). The relative aerobic and anaerobic energy system contribution was calculated using the accumulated oxygen deficit (AOD) method.

Results: The relative contribution of the aerobic energy system to the 200-, 400-, 800-, and 1500-m events was 29 ± 4, 43 ± 1, 66 ± 2, and 84 ± 1% ± SD, respectively. The size of the AOD increased with event duration during the 200-, 400-, and 800-m events (30.4 ± 2.3, 41.3 ± 1.0, and 48.1 ± 4.5 mL·kg-1, respectively), but no further increase was seen in the 1500-m event (47.1 ± 3.8 mL·kg-1). The crossover to predominantly aerobic energy system supply occurred between 15 and 30 s for the 400-, 800-, and 1500-m events.

Conclusions: These results suggest that the relative contribution of the aerobic energy system during track running events is considerable and greater than traditionally thought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most cost effective treatment scheme for effluent from Midfield Meats, an abattoir in Warrnambool, Australia, was evaluated via a series of laboratory and commercial scale experiments. Effectiveness was measured in terms of suspended solids (SS) and biological oxygen demand (BOD) reduction. Economic assessment was based on predicted reduction in trade waste charges versus infrastructure and running costs. From the range of potential treatment technologies, those deemed most appropriate for trialling included pre-screening, sedimentation, coagulation and flocculation treatment and dissolved air floatation (DAF). Prior to evaluation of treatment types, flow, loads and contaminant characterisation of the waste streams was conducted to aid in selection of treatment type and capacity. Prescreening was found to be the most cost effective, followed by sedimentation, coagulation and flocculation treatment and finally DAF. The most economical treatment scheme that satisfied the requirements of Midfield Meats included a combination of prescreening and sedimentation. DAF and coagulation and flocculation treatment satisfactorily treated the wastewater, however were not cost effective under the current trade waste agreement.