14 resultados para Chemical bonding

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis investigates nutrient contribution to six hyper-eutrophic lakes located within close proximity of each other on the Swan Coastal Plain and 20 kilometres south of the Perth Central Business District, Western Australia. The lakes are located within a mixed land use setting and are under the management of a number of state and local government departments and organisations. These are a number of other lakes on the Swan Coastal Plain for which the majority are less than 3 metres in depth and considered as an expression of the groundwater as their base is below the regional groundwater table throughout most of the year. The limited amount of water quality data available for these six lakes and the surface water and groundwater flowing into them has restricted a thorough understanding of the processes influencing the water quality of the lakes. Various private and public companies and organisations have undertaken studies on some of the individual wetlands and there is a wide difference in scientific opinion as to the major source of the nutrients to those wetlands. These previous studies failed to consider regional surface water and groundwater effects on the nutrient fluxes and they predominantly only investigated single wetland systems. This study attempts for the first time to investigate the regional contribution of nutrients to this system of wetlands existing on the Swan Coastal plain. As such, it also includes new research on the nutrient contribution to some of the remaining wetlands. The research findings indicate that the lake sediments represent a considerable store of nutrients (nitrogen and phosphorus). These sediments in turn control the nutrient status of the lake's water column. Surface water is found to contribute on an event-basis load of nutrients to the lakes whilst the groundwater surprisingly appears to contribute a comparatively low input of nutrients but governs the water depth. Analysis of the regional groundwater shows efficient denitrifying abilities as a result of denitrifying bacteria and the transport is localised. Management recommendations for the remediation of the social and environmental value of the lakes include treatment of the lake’s sediments via chemical bonding or atmospheric oxidation; utilising the regional groundwater’s denitrifying abilities to ‘treat’ the surface water via infiltration basins; and investigating the merits of managed or artificial aquifer recharge (MAR).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most industrially applied polymer resins and composites have low surface free energy and lack polar functional groups on their surface, resulting in inherently poor adhesion properties. A strong research momentum to understand polymer adhesion in the last decade has been motivated by the growing needs of the automotive and aerospace industries for better adhesion of components and surface coatings. This paper reviews the recent research efforts on polymer adhesion with a special focus on adhesion mechanisms. It starts with an introduction to adhesion with explanatory notes on adhesion phenomena. Recent research on the adhesion mechanisms of mechanical coupling, chemical bonding and thermodynamic adhesion is then discussed. The area of adhesion promoters is reviewed with the focus on plasma and chemical treatments, along with direct methods for adhesion measurement. The topics of polymer blends and reactive polymerization are considered and the interactions with adhesion mechanisms are reported. The concluding section provides recommendations regarding future research on the contentious aspects of currently accepted adhesion mechanisms and on strategies for enhancing polymer adhesion strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, cellulose nanofibers were obtained from wood pulp using a chemo-mechanical method and thin films were made of these cellulose nanofibers. The morphology of the films was studied by scanning electron microscopy (SEM). SEM image analysis revealed that the films were composed of cellulose nanofibers with an average diameter of around 32 nm. Other properties were also characterized, including the degree of crystallinity by X-ray diffraction, chemical bonding by infrared attenuated total reflectance analysis, and thermal properties by differential scanning calorimetry. The foldable, strong, and optically translucent cellulose nanofiber films thus obtained have many potential applications as micro/nano electronic devices, biosensors and filtration media, etc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graphitic carbon nitride (g-C3N4) has been synthesized via a two-step pyrolysis of melamine (C3H6N6) at 800°C for 2 h under vacuum conditions. X-ray diffraction (XRD) patterns strongly indicate that the synthesized sample is g-C3N4. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) morphologies indicate that the product is mainly composed of graphitic carbon nitride. The stoichiometric ratio of C:N is determined to be 0.72 by elemental analysis (EA). Chemical bonding of the sample has been investigated by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Electron energy loss spectroscopy (EELS) verifies the bonding state between carbon and nitrogen atoms. Optical properties of the g-C3N4 were investigated by PL (photoluminescence) measurements and UV–Vis (ultraviolet–visible) absorption spectra. We suppose its luminescent properties may have potential application as component of optical nanoscale devices. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were also performed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, the effects of helium or a helium/oxygen mixture atmospheric pressure plasma treatment on the adsorption of chitosan onto the cotton fabric were investigated. Fabrics were treated with plasma prior to a chitosan finishing process, whereby fabrics were surface coated using a pad/dry/cure method. Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, surface energy analyser and contact angle measurements were used to investigate the changes on the cotton surface. Furthermore, antimicrobial activity of the cotton fabric was evaluated. The results showed that plasma pre-treatment enhanced the chitosan adsorption to the cotton surface through physical bonding and there was weak evidence of chemical bonding interactions. A combination of plasma and chitosan treatment did not show any significant differences on the antimicrobial properties compared to chitosan only treated fabric. Plasma treatment changed the fibres physically and enhanced the surface energy and thickness of chitosan distributed on the fibres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solid-state structures of the previously known para-substituted diphenyltellurium dichlorides, (p-XC6H4)2TeCl2 (X=H (1), Me (2), MeO (3)) were investigated by 125Te MAS NMR spectroscopy and in case of 2 by single crystal X-ray diffraction. The 125Te-NMR shielding anisotropy (SA) was studied by tensor analyses based on relative intensities of the observed spinning sidebands. Solid-state NMR parameters, namely the isotropic chemical shift (δiso), anisotropy (ζ) and asymmetry (η), were discussed in relation to the molecular structures established by X-ray crystallography. The asymmetry (η) was found to be particularly sensitive to structural differences stemming mostly from the diverse secondary Te...Cl interactions, but no correlation with geometric parameters could be established.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured complexes were prepared from poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) and poly(4-vinylphenol) (PVPh) in tetrahydrofuran (THF). The phase behavior, specific interactions, and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). In this A-b-B/C type block copolymer/homopolymer system, both blocks of the PCL-b-P2VP block copolymer have favorable intermolecular interaction toward PVPh via hydrogen bonding, but the interaction between P2VP block and PVPh is significantly stronger than that between PCL block and PVPh. It was found that the disparity in competitive intermolecular interactions, specifically PVPh and P2VP block interact strongly whereas PVPh and PCL block interact weakly, leads to the formation of a variety of nanostructures depending on PVPh concentration. Spherical micelles of 30−40 nm in diameter were obtained in the complex with 10 wt % PVPh, followed by wormlike micelles with size in the order of 40−50 nm in the complexes with 30−60 wt % PVPh. At low PVPh concentrations, PCL interacts weakly with PVPh, whereas in the complexes containing more than 20 wt % PVPh, the PCL block began to interact considerably with PVPh, leading to the formation of composition-dependent nanostructures. The complex becomes homogeneous with PVPh content beyond 60 wt %, since a sufficient amount of PVPh is available to form hydrogen bonds with both PCL and P2VP. Finally, a model was proposed to explain the self-assembly and microphase morphology of these complexes based on the experimental results obtained. The competitive hydrogen-bonding interactions cause the self-assembly and formation of different microphase morphologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solute/water interactions in a series of diol solutions have been investigated by 1H NMR. Strong hydrogen bonding between water and alcohols that are more basic than water is thought to result in lower chemical shifts of water protons compared to the case of pure water. This is attributed to a greater degree of covalent character in the hydrogen bonding between water and the more basic diols. The inductive effect of the methyl group and longer chain alkyls is observed to increase basicity in ethylene glycol, propylene glycol, and 2,3-butanediol solutions. A correlation between the glass-forming ability of the diol solutions and the stronger hydrogen-bonding solutes (i.e., stronger bases) is developed, with 2,3-butanediol best promoting glass formation at the lowest concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microphase separation induced by competitive hydrogen bonding interactions in double crystalline diblock copolymer/homopolymer blends was studied for the first time. Poly(ethylene oxide)- block-poly(e-caprolactone) (PEO-b-PCL)/poly(4-vinylphenol) (PVPh) blends were prepared in tetrahydrofuran. The diblock copolymer PEO-b-PCL consists of two immiscible crystallizable blocks wherein bothPEO and PCL blocks can form hydrogen bonds with PVPh. In these A-b-B/C diblock copolymer homopolymer blends, microphase separation takes place due to the disparity in intermolecular interactions; specifically, PVPh and PEO block interact strongly whereas PVPh and PCL block interact weakly. The TEM and SAXS results show that the cubic PEO-b-PCL diblock copolymer changes into ordered hexagonal cylindrical morphology upon addition of 20 wt % PVPh followed by disordered bicontinuous phase in the blend with 40 wt % PVPh and then to homogeneous phase at 60 wt % PVPh and above blends. Up to 40 wt % PVPh there is only weak interaction between PVPh and PCL due to the selective hydrogen bonding between PVPh and PEO. However, with higher PVPh concentration, the blends become homogeneous since a sufficient amount of PVPh is available to form hydrogen bonds with both PEO and PCL. A structural model was proposed to explain the self-assembly and microphase morphology of these blends based on the experimental results obtained. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen bonding interaction between each block of the block copolymer and the homopolymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report for the first time multiple vesicular morphologies in block copolymer complexes formed in aqueous media via hydrogen bonding interactions. A model AB/AC diblock copolymer system consisting of polystyrene-block- poly(acrylic acid) (PS-b-PAA) and polystyrene-block-poly(ethylene oxide) (PS-b-PEO) was examined using transmission electron microscopy, small-angle X-ray scattering, and dynamic light scattering. The complexation and morphological transitions were driven by the hydrogen bonding between the complementary binding sites on PAA and PEO blocks of the two diblock copolymers. Upon the addition of PS-b-PEO, a variety of bilayer aggregates were formed in PS-b-PAA/PS-b-PEO complexes including vesicles, multilamellar vesicles (MLVs), thick-walled vesicles (TWVs), interconnected compound vesicles (ICCVs), and irregular aggregates. Among these aggregates, ICCVs were observed as a new morphology. The morphology of aggregates was correlated with respect to the molar ratio of PEO to PAA. At [EO]/[AA] = 0.5, vesicles were observed, while MLVs were obtained at [EO]/[AA] = 1. TWVs and ICCVs were formed at [EO]/[AA] = 2 and 6, respectively. When [EO]/[AA] reached 8 and above, only irregular aggregates appeared. These findings suggest that complexation between two amphiphilic diblock copolymers is a viable approach to prepare polymer vesicles in aqueous media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well-known that the self-assembly of block copolymers either in water or in organic solvents can form a wide range of morphologies in nanometer dimensions depending on its chemical nature. In the present study, the complexation and aggregate morphologies in a model AB/AC diblock copolymer system consisting of polystyrene-block-poly(acrylic acid) (PS-b-PAA) and polystyrene-block-poly(ethylene oxide) (PS-b-PEO) in water were studied using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), and dynamic light scattering (DLS). By varying the relative amounts of the two block copolymers, a variety of bilayer aggregates were formed, including vesicles, multilamellar vesicles (MLVs), thick-walled vesicles (TWVs), interconnected compound vesicles (ICCVs), and irregular aggregates. The hydrophobic PS blocks were segregated as the cores while the hydrogen bonded PEO and PAA blocks formed the coronae of bilayer aggregates. We also investigate how the addition of PS-b-PEO into PS-b-PAA solutions influences the aggregate morphology of the resulting complexes. This work introduces a viable route to multicompartment vesicles in aqueous solutions. The formation of block copolymer vesicles in water is of particular interest because of their potential in various applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forbidden disulfides are stressed disulfides found in recognisable protein contexts previously defined as structurally forbidden. The torsional strain of forbidden disulfides is typically higher than for structural disulfides, but not so high as to render them immediately susceptible to reduction under physionormal conditions. The meta-stability of forbidden disulfides makes them likely candidates as redox switches. Here we mined the Protein Data Bank for examples of the most common forbidden disulfide, the aCSDn. This is a canonical motif in which disulfide-bonded cysteine residues are positioned directly opposite each other on adjacent anti-parallel β-strands such that the backbone hydrogen bonded moieties are directed away from each other. We grouped these aCSDns into homologous clusters and performed an extensive physicochemical and informatic analysis of the examples found. We estimated their torsional energies using quantum chemical calculations and studied differences between the preferred conformations of the computational model and disulfides found in solved protein structures to understand the interaction between the forces imposed by the disulfide linkage and typical constraints of the surrounding β-sheet. In particular, we assessed the twisting, shearing and buckling of aCSDn-containing β-sheets, as well as the structural and energetic relaxation when hydrogen bonds in the motif are broken. We show the strong preference of aCSDns for the right-handed staple conformation likely arises from its compatibility with the twist, shear and Cα separation of canonical β-sheet. The disulfide can be accommodated with minimal distortion of the sheet, with almost all the strain present as torsional strain within the disulfide itself. For each aCSDn cluster, we summarise the structural and strain data, taxonomic conservation and any evidence of redox activity. aCSDns are known substrates of thioredoxin-like enzymes. This, together with their meta-stability, means they are ideally suited to biological switching roles and are likely to play important roles in the molecular pathways of oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new route to prepare nanostructured thermosets by the utilization of intermolecular hydrogen-bonding interactions is demonstrated here. In this study, competitive hydrogen-bonding-induced microphase separation (CHIPS) in epoxy resin (ER) containing an amphiphilic block copolymer poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) is investigated for the first time. The phase separation takes place due to the disparity in the hydrogen-bonding interactions in ER/P2VP and ER/PCL pairs leading to the formation of ordered nanostructures in the ER/block copolymer blends. SAXS and TEM results indicate that the hexagonally packed cylindrical morphology of neat PCL-b-P2VP block copolymer remains but becomes a core-shell structure at 10 wt % addition of ER, and changes to regular lamellae structures at 20-50 wt % then to disordered lamellae with 60 wt % ER. Wormlike structures are obtained in the blends with 70 wt % ER, followed by a completely homogeneous phase of ER/P2VP and ER/PCL. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen-bonding interactions between each component block copolymer and the homopolymer. This versatile method to develop nanostructured thermosets, involving competitive hydrogen-bonding interactions, could be used for the fabrication of hierarchical and functional materials.