30 resultados para Cfd

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of high albedo materials reduces the amount of solar radiation absorbed through building envelops and urban structures and thus keeping their surfaces cooler. The cooling energy savings by using high albedo materials have been well documented. Higher surface temperatures add to increasing the ambient temperature as convection intensity is higher. Such temperature increase has significant impacts on the air conditioning energy utilization in hot climates. This study makes use of a parametric approach by varying the temperature of building facades to represent commonly used materials and hence analyzing its effect on the air temperature through a series of CFD (Computational Fluid Dynamics) simulations. A part of the existing CBD (Central Business District) area of Singapore was selected for the study. Series of CFD simulations have been carried out using the software CFX-5.6. Wind tunnel experiments were also conducted for validation. It was found that at low wind speeds, the effect of materials on the air temperature was significant and the temperature at the middle of a narrow canyon increased up to 2.52°C with the façade material having lowest albedo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bubble characteristics such as shape, size, and trajectory control the hydrodynamics and therefore heat transfer in fluidized bed reactors. Thus understanding these characteristics is very important for the design and scaleup of fluidized beds. An earlier developed Eulerian-Eulerian two-fluid model for simulating dense gas–solid two-phase flow has been used to compare the experimental data in a pseudo-two-dimensional (2-D) bed. Bubbles are injected asymmetrically by locating the nozzle at proximity to the wall, thus presenting the effect wall has on asymmetrical injection as compared to symmetrical injection. In this work, a digital image analysis technique was developed to study the bubble behaviour in a two-dimensional bubbling bed. The high-speed photography reveals an asymmetric wake formation during detachment indicating an early onset of mixing process. The wall forces acts tangentially on thebubble and has a significant impact on the bubble shape, neck formation during detachment and its trajectory through the bed. Larger bubbles drifting away from the centre with longer paths are observed. This qualitative behaviour is well predicted by CFD modelling. Asymmetric injection can significantly influence the heat and mass transfer characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An accurate estimation of pressure drop due to vehicles inside an urban tunnel plays a pivotal role in tunnel ventilation issue. The main aim of the present study is to utilize computational intelligence technique for predicting pressure drop due to cars in traffic congestion in urban tunnels. A supervised feed forward back propagation neural network is utilized to estimate this pressure drop. The performance of the proposed network structure is examined on the dataset achieved from Computational Fluid Dynamic (CFD) simulation. The input data includes 2 variables, tunnel velocity and tunnel length, which are to be imported to the corresponding algorithm in order to predict presure drop. 10-fold Cross validation technique is utilized for three data mining methods, namely: multi-layer perceptron algorithm, support vector machine regression, and linear regression. A comparison is to be made to show the most accurate results. Simulation results illustrate that the Multi-layer perceptron algorithm is able to accurately estimate the pressure drop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple way to improve its power coefficient (cp) of a Savonius turbine is by its installation above a cuboidal building as the building will redirect the wind and increase its speed significantly. To determinethe gain, a turbine was constructed and installed above a bluff body and tow tested. Detailed measurements of vehicle speed and turbine power were made. Tow test speeds were 8, 10 and 12 m/s, while TSR range was 0.6-1.1. Most importantly, wind speed at the position beside and slightly above the turbine was measured during test runs. The cp calculated using this measured wind speed was used to validate CFD simulation results. Simulation results were also used to obtain the relationships between the wind speed of the free stream and at the anemometer position. Typically, wind speed at the anemometer position is about 9% higher than those of the free stream. These relationships were used to derive the free stream wind speed of each experimental run. The cp calculated using these derived free stream wind speeds showed an increase of 25% at 12 m/s wind speed, compared to the cp reported by previous researchers for a similar turbine operating in unmodified air flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quality of high pressure die castings is a function of many interdependent parameters. It has been observed that many defects detected in the HPDC castings can be tracked back to poor die temperature distribution in the critical areas. It has therefore been recommended that the development of a technique to directly control the critical features - making them less sensitive to thermal related parameters - be very beneficial to the HPDC industry. From the information obtained from thermal image (processing), computational fluid dynamics has been applied to design the layout of internal cooling system and assign the flow conditions such as flow rate and pressure of the cooling water. it is observed that CFD prediction provides an excellent insight into the thermal balance of the high pressure die casting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alternant heat transfer induced by particle packet and gas bubbles on an object surface in a gas fluidised bed is computationally studied. The particle packet and bubble are modelled by a DPPM (double particle-layer and Porous Medium) model and a hemispherical model, respectively. Different meshing schemes are applied and different mesh sizes are used in meshing particle packet and heated object and a very large geometrical size difference between them was considered. Two parallel solver processes were proposed to perform the simulation of heat transfer for different purposes and implemented with the Fluent CFD package.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heat transfer on the surface of an object in a gas fluidised bed is sequentially and alternately induced by particle-packet and gas bubble. This phenomenon is studied with computational simulation. The particle-packet and bubble are modelled by a double particle-layers and porous medium model and a hemispherical model, respectively. The heat transfer to and within the object is simulated concurrently. Different grid schemes are applied and different grid sizes are used in meshing the particle-packet and the object as there is a very large difference in their geometrical sizes. Based on theoretical analysis, an approximate method is developed to calculate the heat flux at the surface of the object. The simulation is implemented in a CFD package and the results are compared with experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the urban heat island effect in Singapore and examines the key factors causing this effect. The possibilities of improving heat extraction rate by optimizing air flow in selected hot spots were explored. The effect of building geometry, façade materials and the location of air-conditioning condensers on the outdoor air temperature was explored using computational fluid dynamics (CFD) simulations. It was found that at very low wind speeds, the effect of façade materials and their colours was very significant and the temperature at the middle of a narrow canyon increased up to 2.5 °C with the façade material having lower albedo. It was also found that strategically placing a few high-rise towers will enhance the air flow inside the canyon thereby reducing the air temperature. Adopting an optimum H/W ratio for the canyons increased the velocity by up to 35% and reduced the corresponding temperature by up to 0.7 °C.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Use of high reflectance surfaces reduces the amount of solar radiation absorbed through building envelopes and urban structures and thus keeping their surfaces cooler. The cooling energy savings by using high reflectance surfaces have been well documented. Higher surface temperatures add to increasing the ambient temperature as convection intensity is higher. Such temperature increase has significant impacts on the air conditioning energy utilization in hot climates. This study makes use of numerical simulations to analyze the effect of commonly used building materials on the air temperature. A part of the existing CBD (Central Business District) area of Singapore was selected for the study. A series of Computational Fluid Dynamics (CFD) simulations have been carried out using the software CFX-5.6. It was found that at low wind speeds, the effect of materials on the air temperature was significant and the temperature at the middle of a narrow canyon increased up to 2.5[degrees]C with the facade material having lower reflectance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent times there has been growing interest in the integration of solar collectors, for water heating, into the façade of buildings. However, the design methodology of these devices remains largely the same as typical “stand-alone” collectors. As such it is still common for materials with a high thermal resistance to be used for insulating the rear surface of these collectors.

Unlike a “stand-alone” solar collector that is exposed to the atmosphere at all faces; a building integrated system allows the opportunity for air to act as an insulator at the rear surface of the solar collector. The use of convection suppression devices has been widely discussed in the literature as a means of reducing natural convection heat loss from the front surface of glazed solar collectors. However in this study the use of baffles in an attic was examined as a means of suppressing heat loss by natural convection from the rear surface of a roof-integrated solar collector. The aim of the study was to examine whether the use of baffles would allow the cost of building integrated collectors to be reduced by removing the cost of insulating material.

To determine the effect of baffles in the attic space at the rear surface of the collector, a 3-dimensional triangular cross sectioned enclosure with a vertical aspect ratio of 0.5 and a horizontal aspect ratio of 3.3 was modelled. The flow patterns and heat transfer in the enclosure were determined for Grashof Numbers in the range of 106 to 107 using a commercially available finite volume CFD solver.
It was found that the use of a single adiabatic baffle mounted vertically downwards from the apex, and extending the length of the enclosure, would alter the flow such that the heat transfer due to natural convection was reduced with respect to the length of the baffle.

Furthermore, it was observed that a series of convection cells, not previously reported in the literature, appeared to exist along the length of the enclosure. As such, it may be possible to derive additional benefit in reducing the heat transfer by adding lateral baffles in addition to the single longitudinal baffle modelled in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microfluidics has the potential to enhance the understanding of the biological fluids under strain, due to the laminar nature of the fluid and the possibility to mimic the real conditions. We present advances on charaterization of a microfluidic platform to study high strain rate flows in the transport of biological fluids. These advances are improvements on the reproduction of a  constant extensional strain rate using micro contractions and development of 3D numerical models. The micro geometries have been fabricated in polydimethyl siloxame (PDMS) using standard soft-lithography techniques with a photolithographically patterned mold. A comparison of some microcontractions with different funnel characteristics is presented. The Micro Particle Image Velocimetry technique has been applied to validate the numerical simulations. We demonstrate the use of microfluidics in the reproduction of a large range of controllable extensional strains that can be used in the study of the effect of flow on biological fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological fluids such as blood, proteins and DNA solutiosn moving within fluidic channels can potentially be exposed to high level of shear, extension or mixed stress, either in vitro such as industrial processing of blood products or in vivo such as ocurrs in some pathological conditions. This exposure to a high level of strain can trigger some reactions. In most of the cases the nature of the flow is mixed with shear and extensional components. The ability ot isolate the effects of each component is critical in order to understand the mechanisms behind the reactions and potentially prevent them. Applying hydrodynamic flow focusing, we present in this investigation the characterization of microchannels that allow study of the regions of high shear or high extension strain rate. Micro channels were fabricated in polydimethyl siloxane (PDMS)  using standard soft-lithography techniques with a photolithographically patterned mold. Characterization of the regions with high shear and high extension strain rate is presented. Computational Fluid Dynamics (CFD) simulations in three dimensions have been carried out to gain more detailed local flow information, and the results have been validated experimentally. A comparison between the numerical models and experiment and is presented. The advantages of microfluidic flow focusing in the study  of the effects of shear and extension strain rates for biological fluids are outlined.