183 resultados para Cerium alloys

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cerium diphenyl phosphate (Ce(dpp)3) has previously been shown to be a strong corrosion inhibitor for aluminium-copper magnesium alloy AA2024-T3 and AA7075 in chloride solutions. Surface characterisation including SEM and ToF-SIMS coupled with electrochemical impedance spectroscopy (EIS) measurements are used to propose a mechanism of corrosion inhibition which appears to involve the formation of a complex oxide film of aluminium and cerium also incorporating the organophosphate component. The formation of a thin complex film consisting of hydrolysis products of the Ce(dpp)3 compound and aluminium oxide is proposed to lead to the observed inhibition. SEM analysis shows that some intermetallics favour the creation of thicker deposits predominantly containing cerium oxide compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The data examines the design of magnesium alloys for improved ductility by the edition of rare earth elements. These elements, such as cerium and gadolinium modify the texture of wrought products and also refine the grain size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed rare earth organophosphates have been investigated as potential corrosion inhibitors for AA2024-T3 with the aim of replacing chromate-based technologies. Cerium diphenyl phosphate (Ce(dpp) 3) and mischmetal diphenyl phosphate (Mm(dpp) 3) were added to epoxy coatings applied to AA2024-T3 panels and they were effective in reducing the amount and rate of filiform corrosion in high humidity conditions. Ce(dpp) 3 was the most effective and characterisation of the coating formulations showed approximately a factor of 5 reduction in both the number of corrosion filaments initiated as well as the length of these. Mm(dpp) 3 appeared to reduce the corrosion growth rate by a factor of 2 although it was the more effective inhibitor in solution studies. Spectroscopic characterisation of the coatings indicated that the cerium based inhibitor may disrupt network formation in the epoxy thus resulting in a coating that absorbed more water and allowed greater solubilisation of the corrosion inhibiting compound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that cerium diphenyl phosphate (Cedpp) 3 is a very effective inhibitor of corrosion of aluminium alloys in chloride solutions. This paper describes the results of further studies using electrochemical and constant immersion corrosion tests to compare the effectiveness of Ce(dpp) 3 and Mischmetal diphenyl phosphate Mm(dpp) 3 as inhibitors of corrosion pitting on AA7075-T651 aluminium alloy. The results shows that both Ce(dpp) 3 and Mm(dpp) 3 are excellent inhibitors of pitting corrosion of this alloy in very aggressive environments of continuously aerated 0.1M and 1.0M sodium chloride (NaCl) solutions. Polarisation tests indicate that these compounds act as a cathodic inhibitors by reducing the rate of the oxygen reduction reaction, which results in a decreased corrosion current density and a separation of the corrosion potential from the pitting potential. This inhibition is thought to be due to the formation of a surface film consisting of rare earth metal oxide, aluminium oxide and a cerium-aluminium organo-phosphate complex. Surface analysis data from scanning electron microscopy and X-ray Energy Dispersive Spectroscopy show the complex nature of this protective film. This work further develops our understanding about the mechanisms through which these complex films form, and how inhibition occurs in the presence of these compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium (Mg) based alloys have been extensively considered for their use as biodegradable implant materials. However, controlling their corrosion rate in the physiological environment of the human body is still a significant challenge. One of the most effective approaches to address this challenge is to carefully select alloying compositions with enhanced corrosion resistance and mechanical properties when designing the Mg alloys. This paper comprehensively reviews research progress on the development of Mg alloys as biodegradable implant materials, highlighting the effects of alloying elements including aluminum (Al), calcium (Ca), lithium (Li), manganese (Mn), zinc (Zn), zirconium (Zr), strontium (Sr) and rare earth elements (REEs) on the corrosion resistance and biocompatibility of Mg alloys, from the viewpoint of the design and utilization of Mg biomaterials. The REEs covered in this review include cerium (Ce), erbium (Er), lanthanum (La), gadolinium (Gd), neodymium (Nd) and yttrium (Y). The effects of alloying elements on the microstructure, corrosion behavior and biocompatibility of Mg alloys have been critically summarized based on specific aspects of the physiological environment, namely the electrochemical effect and the biological behavior. This journal is © the Partner Organisations 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A magnesium alloy of eutectic composition (33 wt-'%Al) was directionally solidified in mild steel tubes at two growth rates, 32 and 580 mum s(-1,) in a temperature gradient between 10 and 20 K mm(-1). After directional solidification, the composition of each specimen varied dramatically, from 32'%Al in the region that had remained solid to 18%Al (32 mum s(-1) specimen) and 13%Al (580 mum s(-1) specimen) at the plane that had been quenched from the eutectic temperature. As the aluminium content decreased, the microstructure contained an increasing volume fraction of primary magnesium dendrites and the eutectic morphology gradually changed from lamellar to partially divorced. The reduction in aluminium content was caused by the growth of an Al-Fe phase ahead of the Mg-Al growth front. Most of the growth of the Al-Fe phase occurred during the remelting period before directional solidification. The thickness of the Al-Fe phase increased with increased temperature and time of contact with the molten Mg-Al alloy. (C) 2003 Maney Publishing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using dimensional analysis and the finite element method, the spherical indentation hardness of shape memory alloys (SMAs) is investigated. The scaling relationship between the hardness and the mechanical properties of a SMA, such as the forward transformation stress, the maximum transformation strain magnitude, has been derived. Numerical results demonstrated that the hardness increases with the indentation depth but there is no three-fold relationship between the hardness and the forward transformation stress. Increasing the maximum transformation strain magnitude would reduce the hardness of the material. These research results enhance our understanding of the hardness from the spherical indentation of SMAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape memory alloys (SMAs) exhibit two very important properties: shape memory phenomenon and superelastic deformation due to intrinsic thermoelastic martensitic transformation. To fully exploit the potential of SMAs in developing functional structures or smart structures in mechanical and biomechanical engineering, it is important to understand and quantify the failure mechanisms of SMAs. This paper presents a theoretical study of the effect of phase-transformation-induced volume contraction on the fracture properties of superelastic SMAs. A simple model is employed to account for the forward and reverse phase transformation with pure volume change, which is then applied to numerically study the transformation field near the tip of a tensile crack. The results reveal that during steady-state crack propagation, the transformation zone extends ahead of the crack tip due to forward transformation while partial reverse transformation occurs in the wake. Furthermore, as a result of the volume contraction associated with the austenite-to-martensite transformation, the induced stress-intensity factor is positive. This is in stark contrast with the negative stress-intensity factor achieved in zirconia ceramics, which undergoes volume expansion during phase transformation. The reverse transformation has been found to have a negligible effect on the induced stress-intensity factor. An important implication of the present results is that the phase transformation with volume contraction in SMAs tends to reduce their fracture resistance and increase the brittleness.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical indentation of superelastic shape memory alloys (SMAs) has been theoretically analyzed. Two characteristic points on the superelastic indentation curve have been discovered. The bifurcation force corresponding to the bifurcation point relies on the forward transformation stress and the return force corresponding to the return point relies on the reverse transformation stress.
Based on these theoretical relationships, an approach to determine the transformation stresses of superelastic SMAs has been proposed. To improve the accuracy of the measurement, a slope method to locate the two characteristic points from the slope curves is further suggested. Additionally, the spherical indentation hardness was also analyzed.