29 resultados para Cement composites. Waste tire rubber. Limestone gravel. Deformation

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental investigation of coir mesh reinforced mortar (CMRM) is conducted using nonwoven coir mesh matting. The main parameters in this study are the fiber volume fraction (number of mesh layers) and fiber surface treatment with a wetting agent. The composites are subjected to the four-point bending test. The short-term mechanical properties of CMRM are discussed. Scanning electron micrograph analysis is used to observe the fiber—matrix interfacial characteristics. The results indicate that the addition of coir mesh to mortar significantly improves the composite post-cracking flexural stress, toughness, ductility, and toughness index, compared to plain mortar materials. The Albatex © FFC wetting agent (2-ethylhexanol) can effectively improve water absorption of coir fiber and enhance the fiber—matrix bonding strength. These coir mesh reinforced composites may be useful in civil engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive study was made of the physical properties of a range of cementitiously stabilised materials to determine their suitability for use in in situ pavement construction. This process for recycling existing pavements has considerable environmental and cost benefits. Pavement models incorporating these materials were analysed to determine their structural behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research was to investigate the effects of wood species, particle treatments and mix proportion on the physical (density) and mechanical (compressive strength and dynamicmodulus of elasticity) properties of cement-wood composites. Different mix proportions were investigated, based on the cement: wood ratio of 0.3:0.7, in volume, with Pinus elliottii and Eucalyptus grandis sawdust percentages of 0-100, 25-75, 50-50, 75-25 or 100-0. Sawdust particles were pre-treated with either lime or cement coating to improve cement and wood compatibility. Results show that wood species, particle treatments and mix proportions may influence the physical and mechanical properties of cement-wood composites. In general, results confirm that Eucalyptus sawdust and cement are naturally compatible and do not require any previous particle treatment to avoid compatibility problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Functionalization of multi-walled carbon nanotubes (MWCNTs) plays an important role in eliminating nanotube aggregation for reinforcing polymeric materials. We prepared a new class of natural rubber (NR)/MWCNT composites by using latex compounding and self-assembly technique. The MWCNTs were functionalized with mixed acids (H2SO4/HNO3 = 3:1, volume ratio) and then assembled with poly (diallyldimethylammonium chloride) and latex particles. The Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy were used to investigate the assembling mechanism between latex particles and MWCNTs. It is found that MWCNTs are homogenously dispersed in the natural rubber (NR) latex as individual nanotubes since strong self-aggregation of MWCNTs has been greatly depressed with their surface functionalization. The well-dispersed MWCNTs produce a remarkable increase in the tensile strength of NR even when the amount of MWCNTs is only 1 wt.%. Dynamic mechanical analysis shows that the glass transition temperature of composites is higher and the inner-thermogenesis and thermal stability of NR/MWCNT composites are better, when compared to those of the pure NR. The marked improvement in these properties is largely due to the strong interfacial adhesion between the NR phase and MWCNTs. Functionalization of MWCNTs represents a potentially powerful technology for significant reinforcement of natural rubber materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared bycombining self-assembly and latex compounding techniques. The acid-treated MWCNTs (H2SO4: HNO3=3:1,volume ratio) were self-assembled with poly (diallyldimethylammonium chloride) (PDDA) through electrostaticadhesion. In the second assembling, NR/MWCNTs composites were developed by mixing MWCNTs/PDDAsolution with NR latex. The results show that MWCNTs are homogenously distributed throughout the NRmatrix as single tube and present a great interfacial adhesion with NR phase when MWCNTs contents areless than 3 wt%. Moreover, the addition of the MWCNTs brings about the remarkable enhancement in tensilestrength and crosslink density compared with the NR host, and the data peak at 2 wt% MWCNTs loadings.When more MWCNTs are loaded, aggregations of MWCNTs are gradually generated, and the tensile strengthand crosslink both decrease to a certain extent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epoxidized natural rubber-graphene (ENR-GE) composites with segregated GE networks were successfully fabricated using the latex mixing combined in situ reduced technology. The rheological behavior and electrical conductivity of ENR-GE composites were investigated. At low frequencies, the storage modulus (G′) became frequency-independent suggesting a solid-like rheological behavior and the formation of GE networks. According to the percolation theory, the rheological threshold of ENR-GE composites was calculated to be 0.17 vol%, which was lower than the electrical threshold of 0.23 vol%. Both percolation thresholds depended on the evolution of the GE networks in the composites. At low GE concentrations (<0.17 vol%), GE existed as individual units, while a "polymer-bridged GE network" was constructed in the composites when GE concentrations exceeded 0.17 vol%. Finally, a "three-dimensional GE network" with percolation conductive paths was formed with a GE concentration of 0.23 vol%, where a remarkable increase in the conductivity of ENR-GE composites was observed. The effect of GE on the atom scale free-volume properties of composites was further studied by positron annihilation lifetime spectroscopy and positron age momentum correlation measurements. The motion of ENR chains was retarded by the geometric confinement of "GE networks", producing a high-density interfacial region in the vicinity of GE nanoplatelets, which led to a lower ortho-positronium lifetime intensity and smaller free-volume hole size.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the synergistic reinforcement and deformation of polyvinyl alcohol (PVA)/graphene/montmorillonite clay (MMT) composites with the tensile properties being improved greatly. Particularly, the tensile strength and modulus of PVA composite with 0.9 wt% graphene and 0.3 wt% of MMT were improved by more than 58% and 43% when compared to the neat PVA, respectively, and were at least 10% higher than the enhanced sum of dual PVA composites with 0.9 wt% graphene and 0.3 wt% MMT. This reinforcement was resulted from the good dispersion and effective interfacial interactions as confirmed from morphology investigation, increased glass transition temperature and the shift of O-H stretching. When there were no fillers i.e. in situ reduced graphene (IRG) or MMT or their loading was low, high alignment of PVA could be observed, with increased crystallinity, melting point, lamellae thickness but narrowed crystallite size distribution. The synergistic reinforcement of PVA achieved from combined incorporation of IRG and MMT will pave the way for the development of stronger PVA composites in various applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study has examined the flexural properties of natural and chemically modified coir fiber reinforced cementitious composites (CFRCC). Coir fibers of two different average lengths were used, and the longer coir fibers were also treated with a 1 % NaOH solution for comparison. The fibers were combined with cementitious materials and chemical agents (dispersant, defoamer or wetting agent) to form CFRCC. The flexural properties of the composites, including elastic stress, flexural strength, toughness and toughness index, were measured. The effects of fiber treatments, addition of chemical agents and accelerated ageing of composites on the composites&rsquo; flexural properties were examined. The results showed that the CFRCC samples were 5–12 % lighter than the conventional mortar, and that the addition of coir fibers improved the flexural strength of the CFRCC materials. Toughness and toughness index, which were associated with the work of fracture, were increased more than ten times. For the alkalized long coir fiber composites, a higher immediate and long-term toughness index was achieved. SEM microstructure images revealed improved physicochemical bonding in the treated CFRCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vickers indentations were carried out on an anneal-introduced partially crystallized Zr41Ti14Cu12.5 Ni10Be22.5 bulk metallic glass (BMG), and the evolution of the shear bands in this samplewas investigated and compared to the as-cast, aswell as the structurally relaxed counterparts. The results indicate that the plastic deformation in the partially crystallized BMG was accommodated by the semi-circular (primary) and radial (secondary) shear bands. A full crack or flake that was produced due to the spring back during the load removal was observed. The shear band density in the annealed alloy which was dispersed with crystalliteswas significantly lower than that of the as-cast alloy. The difference of the shear band features among the three kinds of alloy status, i.e., partially crystallized, structurally relaxed and as-cast alloys was discussed in terms of the free volume in the BMGs and the characteristics of nano-composites. It has been demonstrated that the plasticity for the three statuses of alloys queues in the descending order as the as-cast, annealed with partial crystallization, and annealed without crystallization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis examined the mechanical properties of natural fibre reinforced cementitious composite materials. The results have provided essential data for the design of these composite materials for different applications. The theoretical model developed also allows accurate prediction of composite behaviour under different loading conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mg-based metallic glass interpenetrating phase composites (IPCs) containing 30-70 vol% titanium was fabricated in this study. The effects of reinforced phase volume fraction and interspace on the mechanical properties were investigated systematically. With increasing the volume fraction of titanium, the fracture strength and strain increased up to 1860 MPa and 44%, respectively. The results showed that the critical volume fraction (around 40%) of Ti metal should be required for significantly improving plasticity of IPC. Decreasing the interspace of the titanium phase could lead to enhancement of yield and fracture strength. The deformation behavior and strengthening mechanisms were discussed in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For fluid-filled closed cell composites widely distributed in nature, the configuration evolution and effective elastic properties are investigated using a micromechanical model and a multiscale homogenization theory, in which the effect of initial fluid pressure is considered. Based on the configuration evolution of the composite, we present a novel micromechanics model to examine the interactions between the initial fluid pressure and the macroscopic elasticity of the material. In this model, the initial fluid pressure of the closed cells and the corresponding configuration can be produced by applying an eigenstrain at the introduced fictitious stress-free configuration, and the pressure-induced initial microscopic strain is derived. Through a configuration analysis, we find the initial fluid pressure has a prominent effect on the effective elastic properties of freestanding materials containing pressurized fluid pores, and a new explicit expression of effective moduli is then given in terms of the initial fluid pressure. Meanwhile, the classical multiscale homogenization theory for calculating the effective moduli of a periodical heterogeneous material is generalized to include the pressurized fluid "inclusion" effect. Considering the coupling between matrix deformation and fluid pressure in closed cells, the multiscale homogenization method is utilized to numerically determine the macroscopic elastic properties of such composites at the unit cell level with specific boundary conditions. The present micromechanical model and multiscale homogenization method are illustrated by several numerical examples for validation purposes, and good agreements are achieved. The results show that the initial pressure of the fluid phase can strengthen overall effective bulk modulus but has no contribution to the shear modulus of fluid-filled closed cell composites.