6 resultados para Cecal microflora

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal lagoons of the principal islands of Bass Strait, between Australia's mainland and Tasmania, were sampled in two summers. Many, particularly those of low to moderate salinity, contain relatively rich assemblages of microinvertebrates and some endemic Australian freshwater algae. Several species of testate amoebae and rotifers could not be referred to known morphotypes and are probably new species. The presence of certain species on islands of Bass Strait provides a link between populations in mainland Australia and others in Tasmania. Those lagoons are identified that, by virtue of catchments or buffer zones clothed in native vegetation, are favourable for the survival of a native and partly endemic microbiota.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between probiotic (Enterococcus spp., Lactobacillus spp., and Lactococcus spp.) and enteric (Bacteroides spp., Escherichia coli, and Salmonella spp.) bacteria with respect to menaquinone production was examined. Menaquinones were measured in cell pellets by high-pressure liquid chromatography and the main homologues produced were MIK7–11. The growth of both Bacteroides and E. coli cultured with the 3 probiotics was significantly inhibited with concomitant reduction in menaquinone production. The vitamin K status of humans could be affected by consumption of probiotic dairy foods via the contribution made by gut microflora.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dose-limiting diarrhea and myelosuppression compromise the success of irinotecan (7-ethyl-10-[4-[1-piperidino]-1-piperidino] carbonyloxycamptothecin) (CPT-11)-based chemotherapy. A recent pilot study indicates that thalidomide attenuates the toxicity of CPT-11 in cancer patients. This study aimed to investigate whether coadministered thalidomide modulated the toxicities of CPT-11 and the underlying mechanisms using several in vivo and in vitro models. Diarrhea, intestinal lesions, cytokine expression, and intestinal epithelial apoptosis were
monitored. Coadministered thalidomide (100 mg/kg i.p. for 8 days) significantly attenuated body weight loss, myelosuppression, diarrhea, and intestinal histological lesions caused by CPT-11 (60 mg/kg i.v. for 4 days). This was accompanied by inhibition of tumor necrosis factor-, interleukins 1 and 6 and interferon-, and intestinal epithelial apoptosis. Coadministered
thalidomide also significantly increased the systemic exposure of CPT-11 but decreased that of SN-38 (7-ethyl-10-hydroxycampothecin). It significantly reduced the biliary excretion and cecal exposure of CPT-11, SN-38, and SN-38 glucuronide. Thalidomide hydrolytic products inhibited hydrolysis of CPT-11 in rat liver microsomes but not in primary rat hepatocytes. In addition, thalidomide and its major hydrolytic products, such as phthaloyl glutamic acid (PGA), increased the intracellular accumulation of CPT-11 and SN-38 in primary rat hepatocytes. They also significantly decreased the transport of CPT-11 and SN-38 in Caco-2 and parental MDCKII cells. Thalidomide and PGA also significantly inhibited P-glycoprotein (PgP/MDR1), multidrug resistance-associated protein (MRP1)- and MRP2-mediated CPT-11 and SN-38 transport in MDCKII cells. These results provide insights into the pharmacodynamic and  pharmacokinetic mechanisms for the protective effects of thalidomide against CPT-11-induced intestinal toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective - Probiotics and prebiotics that affect gut microflora balance and its associated enzyme activity may contribute to interindividual variation in isoflavone absorption after soy intake, possibly enhancing isoflavone bioavailability. This study examined the effects of the consumption of bioactive yogurt (a probiotic) or resistant starch (a known prebiotic) in combination with high soy intake on soy isoflavone bioavailability.

Methods - Using a crossover design, chronic soy consumption was compared with soy plus probiotic yogurt or resistant starch in older male and postmenopausal females (n = 31). Isoflavone bioavailability was assessed at the beginning and end of each 5-wk dietary period by sampling plasma and urine after a standardized soy meal.

Results - Chronic soy intake did not significantly affect plasma or urinary isoflavones after the soy meal and there were no significant effects of probiotic or resistant starch treatment. However, there were trends for increased circulating plasma daidzein and genistein after the probiotic treatment and for increased plasma daidzein and genistein 24 h after soy intake with resistant starch treatment. Neither treatment induced or increased equol production, although there was a trend for increased plasma equol in “equol-positive” subjects (n = 12) after probiotic treatment.

Conclusion - The weak or absence of effects of probiotic yogurt or resistant starch supplement to a chronic soy diet suggests that gut microflora were not modified in a manner that significantly affected isoflavone bioavailability or metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactobacillus plantarum and subspecies of Lactobacillus casei were isolated from good quality mature Cheddar cheese and characterized with respect to metabolic functions that would allow their use in cheesemaking. In this way microbiological control of the maturation process with particular emphasis on protein catabolism was achieved. The lactobacilli isolated were selected for low growth rates (and acid production) in milk, and low proteinase activity to allow for their addition in high numbers to cheesemilk together with the normal starter flora (group N streptococci). The growth and acid production of the starter bacteria were unaffected by the presence of the lactobacilli during cheese manufacture and it was found that the added lactobacilli were able to grow and function under the conditions prevalent in Cheddar cheese during maturation. It was also demonstrated that the lactobacilli could be grown in an artificial medium to high numbers under controlled conditions and could be harvested for the preparation of cell concentrates, a necessary characteristic for commercialization. The lactobacilli also metabolized citrate, a potential problem in cheese maturation associated with C02 production but this did not adversely affect the maturation process under the conditions used. Compared to the group N streptococci the non-starter lactobacilli possessed a proteinase system that had a higher temperature optimum and was less affected by heat and sodium chloride. They also possessed a more active peptidase system although both the lactobacilli and the starter organisms possessed a similar range of peptidases. Non-starter lactobacilli were added to normal cheese and cheese made with proteinase negative starter. The added organisms did not adversely affect manufacturing parameters and did not metabolize citrate or lead to the formation of biogenic amines. However protein catabolism rates, particularly with respect to peptide degradation, were increased, as was flavour development and intensity. It was observed that the body and texture of the cheeses was unaffected by the treatment. By controlling both the starter and non-starter microflora in the cheeses a practical system for favourably influencing cheese maturation was possible. The investigation has demonstrated that carefully selected and characterized non-starter lactobacilli can be incorporated into Cheddar cheese manufacture in order to influence flavour development during maturation. Moreover the organisms can be added to the vat stage of manufacture without causing problems to the manufacturing process. This approach is a simple cost effective means of improving the cost of Cheddar cheese production and provides an unique opportunity to improve and control quality of all Cheddar cheese produced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of model systems, for example in mice, has shown that the microbiota in the gastrointestinal tract can play an important role in the efficiency of energy extraction from diets. The study reported here aimed to determine whether there are correlations between gastrointestinal tract microbiota population structure and energy use in chickens. Efficiency in converting food into muscle mass has a significant impact on the intensive animal production industries, where feed represents the major portion of production costs. Despite extensive breeding and selection efforts, there are still large differences in the growth performance of animals fed identical diets and reared under the same conditions. Variability in growth performance presents management difficulties and causes economic loss. An understanding of possible microbiota drivers of these differences has potentially important benefits for industry. In this study, differences in cecal and jejunal microbiota between broiler chickens with extreme feed conversion capabilities were analysed in order to identify candidate bacteria that may influence growth performance. The jejunal microbiota was largely dominated by lactobacilli (over 99% of jejunal sequences) and showed no difference between the birds with high and low feed conversion ratios. The cecal microbial community displayed higher diversity, and 24 unclassified bacterial species were found to be significantly (<0.05) differentially abundant between high and low performing birds. Such differentially abundant bacteria represent target populations that could potentially be modified with prebiotics and probiotics in order to improve animal growth performance.