4 resultados para Carrier Proteins

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zinc deficiency, causing impaired growth and development, may have a nutritional or genetic basis. We investigated two cases of inherited zinc deficiency found in breast-fed neonates, caused by low levels of zinc in the maternal milk. This condition is different from acrodermatitis enteropathica but has similarities to the "lethal milk" mouse, where low levels of zinc in the milk of lactating dams leads to zinc deficiency in pups. The mouse disorder has been attributed to a defect in the ZnT4 gene. Little is known about the expression of the human orthologue, hZnT4 (Slc30A4). Sequence analysis of cDNA, real-time PCR and Western blot analysis of hZnT4, carried out on control cells and cells from unrelated mothers of two infants with zinc deficiency, showed no differences. The hZnT4 gene was highly expressed in mouthwash buccal cells compared with lymphoblasts and fibroblasts. The hZnT4 protein did not co-localise with intracellular free zinc pools, suggesting that hZnT4 is not involved in transport of zinc into vesicles destined for secretion into milk. This observation, combined with phenotypic differences between the "lethal milk" mouse and the human disorder, suggests that the "lethal milk" mouse is not the corresponding model for the human zinc deficiency condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natriuretic peptides are bioactive proteins. In plants, biochemical and physiological studies on these molecules has now revealed that they influence stomatal opening, cell volume and the activity of membrane pumps and their localisation within vascular tissues. Thus they have major roles in maintaining water and solute homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipid accumulation during pollen and tapetal development was studied using cryostat sections of unfixed anthers from Brassica napus (rapeseed). Diamidino-2-henylindole (DAPI), a DNA fluorochrome, was used to stain the pollen nuclei in order to identify ten stages of pollen development in Brassica. Storage lipids (i.e. triacylglycerides) were stained using the fluorochrome Nile red. Pollen coat lipids are formed in tapetal plastids between the mid-vacuolate and early maturation pollen stages. The pollen coat components, including lipids and a proportion of the proteins, are derived from the remnants of the tapetum, after its rupture, during the second pollen mitosis. Quantitative microfluorometric analyses demonstrated four phases of lipid body accumulation or depletion in the developing pollen cytoplasm. The majority of storage lipids found in the cytoplasm of the mature pollen grain accumulated during the late vacuolate and early maturation stages when the pollen is bicellular. The level of acyl carrier protein, a protein integrally involved in lipid synthesis, was also found to be maximal in the developing pollen during the bicellular pollen stages of development. This coincided with the most active period of lipid accumulation. These data could indicate that the lipids of the pollen are synthesized in situ, by metabolic processes regulated by expression of genes in the haploid genome.