2 resultados para Car following.

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces an incremental FP-Growth approach for Web content based data mining and its application in solving a real world problem The problem is solved in the following ways. Firstly, we obtain the semi-structured data from the Web pages of Chinese car market and structure them and save them in local database. Secondly, we use an incremental FP-Growth algorithm for mining association rules to discover Chinese consumers' car consumption preference. To find more general regularities, an attribute-oriented induction method is also utilized to find customer's consumption preference among a range of car categories. Experimental results have revealed some interesting consumption preferences that are useful for the decision makers to make the policy to encourage and guide car consumption. Although the current data we used may not be the best representative of the actual market in practice, it is still good enough for the decision making purpose in terms of reflecting the real situation of car consumption preference under the two assumptions in the context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motorbike riders are 34-times more likely to die in a crash compared to car drivers per km travelled (1). Such safety risks together with special skill requirements for the driver and much lower comfort compared to normal cars are the main reasons why motorbikes represent only a fraction of all vehicle sales in developed countries. Deakin University is developing a revolutionary cross-over fun vehicle with ultra low fuel consumption and emissions. This new vehicle generation combines the best of two worlds: the fun to drive, low cost, and small size of a scooter together with the safety, comfort and easiness to operate of a car. The result is a vehicle that is more fuel efficient than most cars or even scooters.

Various tilting cross over vehicles have been presented over the last decade that were trying to automate the tilting control of narrow vehicles to make them safer. Examples of these concepts are the Carver, Clever and in some way also the MP3 scooter from Piaggio. The problem with fully enclosed concepts like the Carver or Clever is that they require very complex and therefore also expensive tilting control systems so that the vehicles are not price competitive compared to low cost micro cars or even normal small cars. The MP3 on the other hand comes with a tilting control system which is only semi automatic so that typical car advantages - comprehensive safety features like crush zones, roll over protection, air bags, safety belts or comfort features like full weather protection including heating and cooling – can not be provided.

Deakin’s approach is quite different to the above mentioned concepts. The requirements were derived based on two different investigations: The first step was a critical evaluation of social trends and the second step was an in-depth benchmarking study of existing concepts which identified the typical strengths and weaknesses of these concepts. In a critical next step a new concept was created that addresses most of the weaknesses of existing tilting three-wheelers in a holistic approach by setting clear priority rankings for the vehicle targets, based on current trends. The priorities were set in the following order: Safety, Affordability, Fun and Efficiency (SAFE).

The key feature that enables an enclosed tilting vehicle is a fully automatic tilting control system. With an automatic tilting control system the driver does not need to put the feet on the ground to balance the vehicle when he stops, so the vehicle can be built with a full enclosure. This allows the implementation of typical car like safety features (seat belts, roll over structure, crush zones, air bags). The SafeRide™ tilting control system is a passive system that involves the driver’s balancing sense in its feedback control system. The vehicle has typical scooter like steering characteristics, where the steering is initiated through countersteering. Another safety critical design feature is the crush zone between the two front wheels which is not possible with only one front wheel or with the powertrain positioned between the front wheels, as the powertrain can’t absorb a lot of energy due to its structural stiffness and density. The passive tilting control system is quite simple and therefore makes the vehicle very affordable, an important factor for successful commercialisation.

Another advantage of integrating the human balancing senses in the feedback control of the tilting system is that the system kicks in slightly after the human balancing reacts. In some instances that can generate the typical adrenalin thrill known from riding a bike. This fun factor is quite common with many trend sports like mountain biking, surfing, roller-skating, snowboarding, or skateboarding. Some of these sports have seen very rapid growth only a short time after they have been invented. Utilising the human balancing system during driving also makes the vehicle safer as the adrenalin is produced after reaching a semi-stable driving condition that is controlled by the vehicles tilting control system, but before the vehicle reaches an unstable driving condition that can not be controlled by the vehicle but only (eventually) by the driver – if he has got the required driving skill and if he is alert enough.

Efficiency superior to most cars and scooters is achieved by the aerodynamics of a fully enclosed body structure in combination with the small frontal area of a typical scooter and the droplet shape enabled by the relatively wide front with 2 wheels and the very narrow tail with only one rear wheel. The passive tilting system also contributes to the extreme efficiency as the system only draws some small electrical power for the electronic control unit. Another feature is a low cost exhaust energy recovery system which is discussed in another paper.