42 resultados para Cadeia de Markov

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we generalize Besag's pseudo-likelihood function for spatial statistical models on a region of a lattice. The correspondingly defined maximum generalized pseudo-likelihood estimates (MGPLEs) are natural extensions of Besag's maximum pseudo-likelihood estimate (MPLE). The MGPLEs connect the MPLE and the maximum likelihood estimate. We carry out experimental calculations of the MGPLEs for spatial processes on the lattice. These simulation results clearly show better performances of the MGPLEs than the MPLE, and the performances of differently defined MGPLEs are compared. These are also illustrated by the application to two real data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the causal relation among attributes in a domain is a key task in data mining and knowledge discovery. The Minimum Message Length (MML) principle has demonstrated its ability in discovering linear causal models from training data. To explore the ways to improve efficiency, this paper proposes a novel Markov Blanket identification algorithm based on the Lasso estimator. For each variable, this algorithm first generates a Lasso tree, which represents a pruned candidate set of possible feature sets. The Minimum Message Length principle is then employed to evaluate all those candidate feature sets, and the feature set with minimum message length is chosen as the Markov Blanket. Our experiment results show the ability of this algorithm. In addition, this algorithm can be used to prune the search space of causal discovery, and further reduce the computational cost of those score-based causal discovery algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an independent evaluation of six recent hidden Markov model (HMM) genefinders. Each was tested on the new dataset (FSH298), the results of which showed no dramatic improvement over the genefinders tested five years ago. In addition, we introduce a comprehensive taxonomy of predicted exons and classify each resulting exon accordingly. These results are useful in measuring (with finer granularity) the effects of changes in a genefinder. We present an analysis of these results and identify four patterns of inaccuracy common in all HMM-based results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider daily financial data from various sources (stock market indices, foreign exchange rates and bonds) and analyze their multiscaling properties by estimating the parameters of a Markov-switching multifractal (MSM) model with Lognormal volatility components. In order to see how well estimated models capture the temporal dependency of the empirical data, we estimate and compare (generalized) Hurst exponents for both empirical data and simulated MSM models. In general, the Lognormal MSM models generate "apparent" long memory in good agreement with empirical scaling provided that one uses sufficiently many volatility components. In comparison with a Binomial MSM specification [11], results are almost identical. This suggests that a parsimonious discrete specification is flexible enough and the gain from adopting the continuous Lognormal distribution is very limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider daily financial data of a collection of different stock market indices, exchange rates, and interest rates, and we analyze their multi-scaling properties by estimating a simple specification of the Markov-switching multifractal (MSM) model. In order to see how well the estimated model captures the temporal dependence of the data, we estimate and compare the scaling exponents H(q) (for q=1,2) for both empirical data and simulated data of the MSM model. In most cases the multifractal model appears to generate ‘apparent’ long memory in agreement with the empirical scaling laws.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the analysis for the performance of the discrete Fourier transform LMS adaptive filter (DFT-LMS) and the discrete cosine transform LMS adaptive filter (DCT-LMS) for the Markov-2 inputs is presented. To improve the convergence property of the least mean squares (LMS) adaptive filter, the DFT-LMS and DCT-LMS preprocess the inputs with the fixed orthogonal transforms and power normalization. We derive the asymptotic results for the eigenvalues and eigenvalue distributions of the preprocessed input autocorrelation matrices with DFT-LMS and DCT-LMS for Markov-2 inputs. These results explicitly show the superior decorrelation property of DCT-LMS over that of DFT-LMS, and also provide the upper bounds for the eigenvalue spreads of the finite-length DFT-LMS and DCT-LMS adaptive filters. Simulation results are demonstrated to support the analytic results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a method for recognising an agent's behaviour in dynamic, noisy, uncertain domains, and across multiple levels of abstraction. We term this problem on-line plan recognition under uncertainty and view it generally as probabilistic inference on the stochastic process representing the execution of the agent's plan. Our contributions in this paper are twofold. In terms of probabilistic inference, we introduce the Abstract Hidden Markov Model (AHMM), a novel type of stochastic processes, provide its dynamic Bayesian network (DBN) structure and analyse the properties of this network. We then describe an application of the Rao-Blackwellised Particle Filter to the AHMM which allows us to construct an efficient, hybrid inference method for this model. In terms of plan recognition, we propose a novel plan recognition framework based on the AHMM as the plan execution model. The Rao-Blackwellised hybrid inference for AHMM can take advantage of the independence properties inherent in a model of plan execution, leading to an algorithm for online probabilistic plan recognition that scales well with the number of levels in the plan hierarchy. This illustrates that while stochastic models for plan execution can be complex, they exhibit special structures which, if exploited, can lead to efficient plan recognition algorithms. We demonstrate the usefulness of the AHMM framework via a behaviour recognition system in a complex spatial environment using distributed video surveillance data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the problem of tracking an object and predicting the object's future trajectory in a wide-area environment, with complex spatial layout and the use of multiple sensors/cameras. To solve this problem, there is a need for representing the dynamic and noisy data in the tracking tasks, and dealing with them at different levels of detail. We employ the Abstract Hidden Markov Models (AHMM), an extension of the well-known Hidden Markov Model (HMM) and a special type of Dynamic Probabilistic Network (DPN), as our underlying representation framework. The AHMM allows us to explicitly encode the hierarchy of connected spatial locations, making it scalable to the size of the environment being modeled. We describe an application for tracking human movement in an office-like spatial layout where the AHMM is used to track and predict the evolution of object trajectories at different levels of detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity recognition is an important issue in building intelligent monitoring systems. We address the recognition of multilevel activities in this paper via a conditional Markov random field (MRF), known as the dynamic conditional random field (DCRF). Parameter estimation in general MRFs using maximum likelihood is known to be computationally challenging (except for extreme cases), and thus we propose an efficient boosting-based algorithm AdaBoost.MRF for this task. Distinct from most existing work, our algorithm can handle hidden variables (missing labels) and is particularly attractive for smarthouse domains where reliable labels are often sparsely observed. Furthermore, our method works exclusively on trees and thus is guaranteed to converge. We apply the AdaBoost.MRF algorithm to a home video surveillance application and demonstrate its efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to learn and recognize human activities of daily living (ADLs) is important in building pervasive and smart environments. In this paper, we tackle this problem using the hidden semi-Markov model. We discuss the state-of-the-art duration modeling choices and then address a large class of exponential family distributions to model state durations. Inference and learning are efficiently addressed by providing a graphical representation for the model in terms of a dynamic Bayesian network (DBN). We investigate both discrete and continuous distributions from the exponential family (Poisson and Inverse Gaussian respectively) for the problem of learning and recognizing ADLs. A full comparison between the exponential family duration models and other existing models including the traditional multinomial and the new Coxian are also presented. Our work thus completes a thorough investigation into the aspect of duration modeling and its application to human activities recognition in a real-world smart home surveillance scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of learning and recognizing human activities of daily living (ADL), which is an important research issue in building a pervasive and smart environment. In dealing with ADL, we argue that it is beneficial to exploit both the inherent hierarchical organization of the activities and their typical duration. To this end, we introduce the Switching Hidden Semi-Markov Model (S-HSMM), a two-layered extension of the hidden semi-Markov model (HSMM) for the modeling task. Activities are modeled in the S-HSMM in two ways: the bottom layer represents atomic activities and their duration using HSMMs; the top layer represents a sequence of high-level activities where each high-level activity is made of a sequence of atomic activities. We consider two methods for modeling duration: the classic explicit duration model using multinomial distribution, and the novel use of the discrete Coxian distribution. In addition, we propose an effective scheme to detect abnormality without the need for training on abnormal data. Experimental results show that the S-HSMM performs better than existing models including the flat HSMM and the hierarchical hidden Markov model in both classification and abnormality detection tasks, alleviating the need for presegmented training data. Furthermore, our discrete Coxian duration model yields better computation time and generalization error than the classic explicit duration model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Directly modeling the inherent hierarchy and shared structures of human behaviors, we present an application of the hierarchical hidden Markov model (HHMM) for the problem of activity recognition. We argue that to robustly model and recognize complex human activities, it is crucial to exploit both the natural hierarchical decomposition and shared semantics embedded in the movement trajectories. To this end, we propose the use of the HHMM, a rich stochastic model that has been recently extended to handle shared structures, for representing and recognizing a set of complex indoor activities. Furthermore, in the need of real-time recognition, we propose a Rao-Blackwellised particle filter (RBPF) that efficiently computes the filtering distribution at a constant time complexity for each new observation arrival. The main contributions of this paper lie in the application of the shared-structure HHMM, the estimation of the model's parameters at all levels simultaneously, and a construction of an RBPF approximate inference scheme. The experimental results in a real-world environment have confirmed our belief that directly modeling shared structures not only reduces computational cost, but also improves recognition accuracy when compared with the tree HHMM and the flat HMM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a coherent approach using the hierarchical HMM with shared structures to extract the structural units that form the building blocks of an education/training video. Rather than using hand-crafted approaches to define the structural units, we use the data from nine training videos to learn the parameters of the HHMM, and thus naturally extract the hierarchy. We then study this hierarchy and examine the nature of the structure at different levels of abstraction. Since the observable is continuous, we also show how to extend the parameter learning in the HHMM to deal with continuous observations.