6 resultados para CUO-CEO2

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ZnO, TiO2 and CeO2 are known as UV-shielding ceramic materials that have advantages over organic UV absorbers for their photo-stability and non-hazardous nature to human bodies. However, they normally cause low transparency in the visible-light range due to light scattering by large particles, which is undesirable for many transparent UV-blocking applications in cosmetic and plastic industries. Light-scattering efficiency of particles can be drastically reduced by decreasing the particle sizes down below 100 nm. This paper reviews recent investigation on the synthesis of ZnO and CeO2 nanoparticles by mechanochemical processing. The resulting particles had a significantly low degree of agglomeration, having mean particle sizes of ~ 25 nm and ~ 10 nm, respectively. The aqueous suspensions of the nanoparticles showed strong absorption in the UV-light range and high transmittance in the visible-light range. Mechanochemical processing offers the possibility of industrial-scale production of transparent UV-shielding ceramic particles for many applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dispersion characterization of nanoparticles was carried out using UV/Vis spectroscopy. ZnO and CeO2 nanoparticles of sizes ranging 10 - 250 nm were investigated for slurries having various concentrations. The particles were synthesized by mechanochemical processing, which allows the formation of agglomeration-free nanoparticles. It was found that the UV/Vis spectra were highly sensitive to mean particle sizes and agglomeration states. The results showed that UV/Vis spectroscopy is a highly promising technique for studying nanoparticle dispersions having a wide range of concentrations in various media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of H2O2 in the preparation of nanocrystalline CeO2 has been investigated by treating solutions of Ce(III) with NaOH in the presence of different concentrations of H2O2. The resulting precipitated material was then examined by a range of techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). A decrease in CeO2 crystallite size with increasing H2O2 concentration was observed. This was found to be associated with the formation of an amorphous material containing an η2-peroxide (O22-) species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of molecular-level multiple-component composites are particularly challenging due to the lack of direct bonding among different components. In this study, molecular-level graphene oxide (GO)-polyacryl amide (PAM)-CeOx composites were successfully synthesized, using the simultaneous polymerization and crosslinking strategy. Attenuated total reflection Fourier transform infrared (ATR-FTIR) and nuclear magnetic resonance (NMR) techniques confirmed that polyacryl amide (PAM) chains were successfully grafted onto the surface of GO. X-ray photoelectron spectroscopic (XPS) and X-ray diffraction (XRD) analyses further revealed the characteristic signals of cerium elements and CeO2 phase respectively. Scanning electron microscopy (SEM) showed that the surface morphology of the GO-PAM-CeOx composites was substantially thicker and rougher than those of the original GO. Further exploration of the reaction mechanism clearly demonstrate the existence of strong chelating interaction among PAM chains and Ce(IV) ions. In particular, the polymerization of acryl amide monomers and the crosslinking reaction between PAM and Ce(IV) or Ce(III) ions were realized simultaneously, leading to the final formation of molecular-level GO-PAM-CeOx composites. Moreover, the as-synthesized GO-PAM-CeOx composites were capable of effectively decomposing Rhodamine B under simulated sunlight, making it a potential candidate as a new photo catalyst. To sum up, this report demonstrates the potential utility of simultaneous polymerization and crosslinking method for the synthesis of other multiple-component composites at molecular-level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper oxide nanoparticles (CuO-NPs) are frequently used for many technical applications, but are also known for their cell toxic potential. In order to investigate a potential use of CuO-NPs as a therapeutic drug for glioma treatment, we have investigated the consequences of an application of CuO-NPs on the cellular copper content and cell viability of C6 glioma cells. CuO-NPs were synthesized by a wet-chemical method and were coated with dimercaptosuccinic acid and bovine serum albumin to improve colloidal stability in physiological media. Application of these protein-coated nanoparticles (pCuO-NPs) to C6 cells caused a strong time-, concentration- and temperature-dependent copper accumulation and severe cell death. The observed loss in cellular MTT-reduction capacity, the loss in cellular LDH activity and the increase in the number of propidium iodide-positive cells correlated well with the specific cellular copper content. C6 glioma cells were less vulnerable to pCuO-NPs compared to primary astrocytes and toxicity of pCuO-NPs to C6 cells was only observed for incubation conditions that increased specific cellular copper contents above 20 nmol copper per mg protein. Both cellular copper accumulation as well as the pCuO-NP-induced toxicity in C6 cells were prevented by application of copper chelators, but not by endocytosis inhibitors, suggesting that liberation of copper ions from the pCuO-NPs is the first step leading to the observed toxicity of pCuO-NP-treated glioma cells.