15 resultados para CRITICAL-TEMPERATURE

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1°C increase h-1) and thermal selection (~10-24°C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16°C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25°C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2°C, 27.8±0.2°C and 31.4±0.1°C. The upper, 23.1±0.2°C, and lower, 15.0±1.7°C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10°C-25°C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2nmol larvae-1h-1 in one-day old larvae to 40.1-99.4nmol h-1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25°C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25°C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An understanding of the physical hydrogel network formation has been obtained by dynamic rheological experiments. The evidence shows that the network formation turns out to be a nucleation-controlled process. It was found that there exists a critical temperature Tc; fiber branching is greatly enhanced when the network formation is performed in the regime of T<Tc (T, the final setting temperature). This finding enables the authors to build significantly enhanced gel networks. So far G′ (elastic modulus) of the hydrogel network has been enhanced by 187% while the formation period can be greatly shortened to only 1/20 of the previous process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Survival, oxygen consumption (MO2), total plasma cortisol and glucose levels and gill heat-shock protein 70 (hsp70) expression were measured in 10 and 50 g juvenile Atlantic cod Gadus morhua during an acute temperature increase (2° C h−1) to their critical thermal maximum. Ninety three per cent of the fish in both size classes survived to 24° C; however, mortality was 100% within 15 min of reaching this temperature. The MO2 for both size classes increased significantly with temperature, reaching peak values at 22° C that were c. 2·8-fold those of control (10° C) fish. Resting plasma cortisol and glucose levels were lower in 10 g as compared to 50 g fish. Plasma glucose levels were highly variable in both size classes, and significant increases were only seen at >22° C for the 10 g fish. In contrast, plasma cortisol showed an exponential increase with temperature starting at 16° C in both size classes, and reached maximum levels at 22° C that were 19-fold (10 g fish) and 35-fold (50 g fish) higher than their respective control groups. Both the constitutive (73 kDa) and inducible (72 kDa) isoforms of hsp70 were detected in both size classes using the widely utilized mouse monoclonal antibody. Expression of these isoforms, however, did not change when Atlantic cod were exposed to elevated temperature, and the 72 kDa isoform was not detected using salmonid-specific antibodies. These results indicate that juvenile Atlantic cod are very sensitive to acute increases in water temperature. In addition, they (1) show that MO2and plasma cortisol, but not plasma glucose or gill hsp 70 levels, are sensitive indicators of thermal stress in Atlantic cod and (2) support previous reports that the upper critical temperature for this species is 16° C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

If heat generated through activity can substitute for heat required for thermoregulation, then activity in cold environments may be energetically free for endotherms. Although the possibility of activity-thermoregulatory heat substitution has been long recognized, its empirical generality and ecological implications remain unclear. We combine a review of the literature and a model of heat exchange to explore the generality of activity-thermoregulatory heat substitution, to assess the extent to which substitution is likely to vary with body size and ambient temperature, and to examine some potential macroecological implications. A majority of the 51 studies we located showed evidence of activity-thermoregulatory heat substitution (35 of 51 studies), with 28 of 32 species examined characterized by substitution in one or more study. Among studies that did detect substitution, the average magnitude of substitution was 57%, but its occurrence and extent varied taxonomically, allometrically, and with ambient temperature. Modeling of heat production and dissipation suggests that large birds and mammals, engaged in intense activity and exposed to relatively warm conditions, have more scope for substitution than do smaller endotherms engaged in less intense activity and experiencing cooler conditions. However, ambient temperature has to be less than the lower critical temperature (the lower bound of the thermal neutral zone) for activity-thermoregulatory heat substitution to occur and this threshold is lower in large endotherms than in small endotherms. Thus, in nature, substitution is most likely to be observed in intermediate-sized birds and mammals experiencing intermediate ambient temperatures. Activity-thermoregulatory heat substitution may be an important determinant of the activity patterns and metabolic ecology of endotherms. For example, a pattern of widely varying field metabolic rates (FMR) at low latitudes that converges to higher and less variable FMR at high latitudes has been interpreted as suggesting that warm environments at low latitudes allow a greater variety of feasible metabolic niches than do cool, high-latitude environments. However, activity-thermoregulatory heat substitution will generate this pattern of latitudinal FMR variation even if endotherms from cold and warm climates are metabolically and behaviorally identical, because the metabolic rates of resting and active animals are more similar in cold than in warm environments. Activity-thermoregulatory heat substitution is an understudied aspect of endotherm thermal biology that is apt to be a major influence on the physiological, behavioral and ecological responses of free-ranging endotherms to variation in temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mean oxygen consumption and simultaneous ventilation frequency of nine non-reproductive brown long-eared bats (body mass 8.53–13.33 g) were measured on 159 occasions. Ambient (chamber) temperature at which the measurements were made ranged from 10.8 to 41.1°C. Apneic ventilation occurred in 22 of the 59 measurements made when mean oxygen consumption was less than 0.5 ml·min-1. No records of apneic ventilation were obtained when it was over 0.5 ml·min-1. The relationship between ventilation frequency and mean oxygen consumption depended on whether ventilation was apneic or non-apneic. When ventilation was non-apneic the relationship was positive and log-linear. When ventilation was apneic the relationship was log-log. Within the thermoneutral zone ventilation frequency was not significantly different from that predicted from allometric equations for a terrestrial mammal of equivalent body mass, but was significantly greater than that predicted for a bird. A reduction in the amount of oxygen consumed per breath occurred at ambient temperatures above the upper critical temperature (39°C).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Samples of electrolytic tough pitch (ETP) pure copper were subjected to 12 passes of Equal-Channel Angular Pressing (ECAP) at room temperature with and without back pressure. Subsequent annealing was performed to evaluate the influence of back pressure during ECAP on the thermal behavior of ultrafine-grained copper. The microstructural and hardness changes caused by annealing were characterized by orientation imaging microscopy (OIM) and microhardness measurements. The application of back pressure resulted in an earlier drop in hardness upon annealing, which is believed to be associated with a lower critical temperature for the initiation of recrystallization and a rapid coarsening of microstructure. Regardless of whether back pressure was applied or not, structure coarsening during short-time annealing of ECAP-processed copper was governed by discontinuous static recrystallization. This is seen as a result of microstructure heterogeneity. Analysis of recrystallization kinetics was carried out based on observations of the microstructure after annealing in terms of the Avrami equation. The magnitude of the apparent activation energies for recrystallization in the absence of back pressure and in the case of back pressure of 100 MPa was estimated to be ~99 kJ/mol and ~91 kJ/mol, respectively. The reasons for reduced activation energy in the case of processing with back pressure are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A C–Mn–V steel was used to study ultrafine ferrite formation (1–3 μm) through dynamic strain-induced transformation (DSIT) using hot torsion experiments. A systematic study determined the critical strain for the start of DSIT (C,DSIT), although this may not lead to a fully ultrafine microstructure. Therefore, the strain to produce an ultrafine ferrite (UFF) as final microstructure (C,UFF) during deformation was also determined. In addition, the effect of thermomechanical parameters such as deformation temperature, prior austenite grain size, strain rate and cooling rate on C,DSIT and C,UFF has been evaluated. DSIT ferrite nucleated on prior austenite grain boundaries at an early stage of straining followed by intragranular nucleation at higher strains. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary and intragranular ferrite grains during post-deformation cooling. Also, C,DSIT and C,UFF increased with an increase in the prior austenite grain size and deformation temperature. The post-deformation cooling had a strong effect not only on C,UFF but also the UFF microstructure (i.e. final ferrite grain size and second phase characteristics).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim. This paper is a report of a study to identify predictors of critical care admission in emergency department patients triaged as low to moderate urgency that may be apparent early in the emergency department episode of care.

Background. Observations of clinical practice show that a number of emergency department patients triaged as low to moderate urgency require critical care admission, raising questions about the relationship between illness severity and physiological status early in the emergency department episode of care.

Methods. A retrospective case control design was used. All participants were aged over 18 years, triaged to Australasian Triage Scale categories 3, 4 or 5, and attended emergency department between 1 July 2004 and 30 June 2005. Cases were admitted to intensive care unit or coronary care unit and controls were admitted to general medical or surgical units. Cases (n = 193) and controls (n = 193) were matched by age, gender, emergency department discharge diagnosis and triage category.

Results. Critical care admission associated with: (i) a presenting complaint of nausea, vomiting and diarrhoea (OR = 3·40, 95%CI:1·22–9·47, P = 0·019), (ii) heart rate abnormalities at triage (OR = 2·10, 95%CI:1·19–3·71, P = 0·011), (iii) temperature abnormalities at triage (OR = 2·87 95%CI:1·05–7·89, P = 0·041), (iv) respiratory rate at first nursing assessment (OR = 1·66, 95%CI:1·05–2·06, P = 0·31) or (v) heart rate abnormalities at first nursing assessment (OR = 1·57, 95%CI = 1·04−2·39, P = 0·033).

Conclusion. Derangements in temperature, respiratory rate and heart appear to increase risk of critical care admission. Further work using a prospective approach is needed to establish which physiological parameters have the highest predictive validity, the level(s) of physiological abnormality with highest clinical utility, and the optimal timing for collection of physiological data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wetting behavior of water droplets was studied on tunable nanostructured polystyrene (PS) surfaces fabricated by temperature-induced capillary template wetting. The surface morphology of PS varied with the annealing temperature. Contact angle (CA) measurements showed that the wettability of polystyrene surfaces could be tuned from hydrophobic (CA = 104°) to superhydrophobic (CA = 161°) by rendering different morphologies, which could be explained by two distinct wetting modes, i.e., the Wenzel and Cassie–Baxter wetting state. Meanwhile, the critical annealing temperature inducing wetting transition between the Wenzel state and Cassie–Baxter state was obtained. This approach could be easily extended to produce superhydrophobic surfaces on other thermoplastic polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of novel organic ionic compounds based on the pyrrolidinium cation are described which have been found to be ion conductors in their solid states around room temperature. The properties of the compounds are consistent with their exhibiting plastic crystal phases. In order to understand some of the molecular origins of the plastic crystal behaviour and the ion conductivity that it promotes, a number of related compounds based on the imidazolium and ammonium cations are also described which have structural elements in common with the pyrrolidinium cation, but which do not show the plastic behaviour. It is found therefore that the nature of the cation is quite critical to the development of this behaviour. The alkyl methyl pyrrolidinium cation is found to produce plastic crystal phases when the alkyl chains are short, thereby preserving the ability of the cation to rotate with minimal steric hindrance. The ammonium and imidazolium cations of comparable size and structure are less able to produce these plastic phases, in many cases because the low temperature phase proceeds to melt rather than forming a stable rotator phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of fiber networks and the resulting rheological properties of supramolecular soft materials are dramatically influenced when the volume of the system is reduced to a threshold. Unlike un-confined systems, the formation of fiber networks under volume confinement is independent of temperature and solute concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rheological properties of a hierarchically structured supramolecular soft material are mainly determined by the structure of its network. Controlling the thermodynamic driving force of physical gels (one type of such materials) during the formation has proven effective in manipulating the network structure due to the nature of nucleation and growth of the fiber network formation in such a supramolecular soft material. Nevertheless, it is shown in this study that such a property can be dramatically influenced when the volume of the system is reduced to below a threshold value. Unlike un-confined systems, the network structure of such a soft material formed under volume confinement contains a constant network size, independent of the experimental conditions, i.e. temperature and solute concentration. This implies that the size of the fiber networks in such a material is invariable and free from the influence of external factors, once the volume is reduced to a threshold. The observations of this work are significant in the control of the formation of fibrous networks in materials of this type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable, safe and high performance solid electrolytes are a critical step in the advancement of high energy density secondary batteries. In the present work we demonstrate a novel solid electrolyte based on the organic ionic plastic crystal (OIPC) triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI). With the addition of 4 mol% LiFSI, the OIPC shows a high conductivity of 0.26 mS cm-1 at 22 °C. The ion transport mechanisms have been rationalized by compiling thermal phase behaviour and crystal structure information obtained by variable temperature synchrotron X-ray diffraction. With a large electrochemical window (ca. 6 V) and importantly, the formation of a stable and highly conductive solid electrolyte interphase (SEI), we were able to cycle lithium cells (LiLiFePO4) at 30 °C and 20 °C at rates of up to 1 C with good capacity retention. At the 0.1 C rate, about 160 mA h g-1 discharge capacity was achieved at 20 °C, which is the highest for OIPC based cells to date. It is anticipated that these small phosphonium cation and [FSI] anion based OIPCs will show increasing significance in the field of solid electrolytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Additive Manufacturing (AM) includes a range of approaches that correlate with computer aided design (CAD) and manufacturing by fabrication via precise layers and is a promising method for the production of medical tools. In this study, different aspects and mechanisms of solidification for curved surfaces based on equilibrium at curved interfaces, Monge patch, interfacial and Gibbs energy will be discussed. Also, the effect of capillarity, geometry, substrate temperature, cooling rate and scanning parameters in the solidification of a prosthetic acetabular cup (PAC) using selective laser melting (SLM) is analysed. The contributions of this work are analysing solidification and effective factors in this process to produce parts with a higher quality and mechanical properties such as strength, strain, porosity, relative density and hardness. Results indicate that due to the surface to volume (S/V) ratio, and the increasing effect of the radius on Monge patch, thermal stresses and surface forces are more prevalent on outer surfaces. Moreover, solidification and mechanical properties are related to capillarity, geometry, substrate temperature, cooling rate, scanning power and speed. The results also indicate the interaction of solute diffusion and heat transfer with interatomic forces in large S/V ratio and at small scales tend to improve solidification.