64 resultados para CONTENT AUSTENITIC STEEL

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical behaviour of Fe-18Mn-0.6C-1Al (wt%) TWIP steel was modelled in the temperature range from room temperature to 400°C. The proposed constitutive model was based on the Kocks-Mecking-Estrin (KME) model. The model parameters were determined using extensive experimental measurements of the physical parameters such as the dislocation mean free path and the volume fraction of twinned grains. More than 100 grains with a total area of ~300μm2 were examined at different strain levels over the entire stress-strain curve. Uniaxial tensile deformation of the TWIP steel was modelled for different deformation temperatures using a modelling approach which considers two distinct populations of grains: twinned and twin-free ones. A key point of the work was a meticulous experimental determination of the evolution of the volume fraction of twinned grains during uniaxial tensile deformation. This information was implemented in a phase-mixture model that yielded a very good agreement with the experimental tensile behaviour for the tested range of deformation temperatures. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work has investigated the evolution of microbands (MBs) and their interaction with strain-induced NbC precipitates during uniaxial compression of a model austenitic Fe-30Ni-Nb steel at 925 °C. The (1 1 0) fibre grains, both without and with copious amounts of precipitates, contained up to large strains crystallographic MBs aligned close to the highly stressed {1 1 1} slip planes having large Schmid factors. The MBs thus maintained their crystallographic character during straining, through continuously rearranging themselves, and did not follow the macroscopically imposed rigid body rotation. During double-pass deformation, fine NbC particles formed at short inter-pass holding remained strongly pinned at small reloading strains and appeared to be dragged by rearranging MB walls. With increasing reloading strain, the fine precipitates became progressively released from the above walls. During reloading after increased holding time, the coarsened particles tended with their increased size to become increasingly detached from the MB walls already at a small strain. The precipitate-free MB wall segments rearranged during straining to maintain their crystallographic alignment, while the detached precipitates followed the sample shape change and rotated towards the compression plane. The MB wall rearrangement generally occurred through cooperative migration of the corresponding dislocation networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work was aimed at a detailed investigation of the orientation dependence of the microstructure characteristics in a Fe-30Ni-Nb austenitic model steel subjected to hot uniaxial compression at 1198 K (925 °C) at a strain rate of 1 s−1 to several strain levels up to 1.0. The quantification of the substructure evolution as a function of strain was performed for the stable 〈011〉 oriented grains. Other grain orientations were also investigated in detail at a strain of 0.2. The 〈110〉 oriented grains contained self-screening arrays of “microbands” (MBs) aligned with high Schmid factor {111} slip planes. The MB crystallographic alignment was largely maintained up to a strain of 1.0, which suggests that the corresponding boundaries kept continuously rearranging themselves during straining and did not follow the sample shape change. The mean MB spacing decreased and misorientation angle increased with strain towards saturation, indicating the operation of the “repolygonization” dynamic recovery mechanism. The non-〈011〉 oriented grains displayed a strong tendency to split during deformation into deformation bands having alternating orientations and being mutually rotated by large angles. The bands were separated by transition regions comprising arrays of closely spaced, extended sub-boundaries collectively accommodating large misorientations across very small distances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presents a detailed investigation of the microstructure characteristics of the (111) oriented grains in a Fe-30Ni-Nb austenitic model steel subjected to hot uniaxial compression at 925 °C at a strain rate of 1 s- 1. The above grains exhibited a tendency to split into deformation bands having alternating orientations and largely separated by transition regions comprising arrays of closely spaced, extended sub-boundaries collectively accommodating large misorientations across very small distances. On a fine scale, the (111) oriented grains typically contained a mix of "microbands" (MBs) closely aligned with {111} slip planes and those significantly deviated from these planes. The above deformation substructure thus markedly differed from the microstructure type, comprising strictly non-{111} aligned MBs, expected within such grains on the basis of the uniaxial compression experiments performed using aluminium. Both the crystallographic MBs and their non-crystallographic counterparts typically displayed similar misorientations and formed self-screening arrays characterized by systematically alternating misorientations. The crystallographic MBs were exclusively aligned with {111} slip planes containing slip systems whose sum of Schmid factors was the largest among the four available slip planes. The corresponding boundaries appeared to mainly display either a large twist or a large tilt component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work investigated the evolution of strain-induced NbC precipitates in a model austenitic Fe-30Ni-Nb steel deformed at 925 °C to a strain of 0.2 during post-deformation holding between 3 and 1000 s and their effect on the reloading flow stress. The precipitate particles preferentially nucleated on the nodes of the periodic dislocation networks constituting microband walls. Holding for 10 s resulted in the formation of fine, largely coherent NbC particles with a mean diameter of ∼5 nm, which displayed a cube-on-cube orientation relationship with austenite and caused the maximum increase in the reloading steady-state flow stress. A further increase in the holding time from 30 to 1000 s led to the formation of semi-coherent, gradually coarser and more widely spaced particles with a mean diameter of 8 nm and above, which led to a gradual decrease in the reloading steady-state flow stress. The holding time increase resulted in progressive disintegration of the dislocation substructure and dislocation annihilation through static recovery processes, which was also reflected by the measured softening fractions. The precipitate particle shape changed during post-deformation annealing from elliptical to faceted octahedral and subsequently to tetra-kai-decahedral. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The demand for high strength materials and improvements in heat treatment techniques has given rise to this new form of high strength steel known as nanobainite steel. The production of nanobainite steel involves slow isothermal holding of austenitic steel around 200oC for 10 days, in order to obtain a carbon enriched austenite and cooling to room temperature using austempering. The microstructure of nanobainite steel is dual phase consisting of alternate layers of bainitic ferrite and austenite. The experimental design consists of face milling under 12 combination of Depth of Cut (DoC)-1, 2 and 3mm; cutting speed-100 and 150m/min; constant feed- 0.15mm/rev and coolant on/off. The machinability of the material is assessed by means of analysis such as metallography and cutting force analysis. The results obtained are used to assess the most favorable condition to machine this new variety of steel. Future work involves study on phase transformation by quantifying the microstructural phase before and after milling using XRD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

'Heterogeneous twinning' is defined as plastic deformation due to the formation and progress of twins resulting in surface wrinkles on the deforming part when the initial grain size is relatively large compared to the typical size of the part. In the case of a Twinning Induced Plasticity (TWIP) steel with an initial grain size of ~160. m, the heterogeneous twinning generated visible wrinkles, an orange peel effect, under medium uni-axial strains. The heterogeneous twinning did not occur in the material subjected to high shear strains. The complications resulting from this phenomenon on strain hardening characterization of the TWIP steels using two commonly used mechanical tests, tensile and torsion are discussed along with some experimental aspects of heterogeneous twinning. © 2014.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The severe plastic deformation of a Twinning Induced Plasticity (TWIP), 0.61C-22.3Mn-0.19Si-0.14Ni-0.27Cr (wt. %) steel by Equal Channel Angular Pressing (ECAP) at elevated temperatures was used to study the deformation mechanism as a function of accumulated strain and processing parameters. The relationship between the microstructures after different deformation schedules of ECAP at the temperatures of 200, 300 and 400oC, strain hardening behavior and mechanical properties was studied. The best balance between strength and ductility (1702 MPa and 24%) was found after 2 passes at 400oC and 300oC of ECAP. It was due to the formation of deformation microbands and twins in the microstructure. The twinning was observed after all deformation schedules except after 1 pass at 400oC. The important finding was the formation of twins in the ultrafine grains. Moreover, the stacking faults were observed in the subgrains with the size of 50nm. It is also worth mentioning the formation of nano- twins within the micro-twins at the same time. It was found that the deformation schedule affects the dislocation substructure with formation of deformation bands, cells, subgrains, two variants of twins that, in turn, influence the strain-hardening behavior and mechanical properties. Keywords: Twinning Induced Plasticity steels; Equal Channel Angular Pressing; mechanical properties; transmission electron microscopy; micro/nano twins; dislocation substructure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The method of Fields and Backofen has been commonly used to reduce the data obtained by hot torsion test into flow curves. The method, however, is most suitable for materials with monotonic strain hardening behaviour. Other methods such as Stüwe’s method, tubular specimens, differential testing and the inverse method, each suffer from similar drawbacks. It is shown in the current work that for materials with multiple regimes of hardening any method based on an assumption of constant hardening indices introduces some errors into the flow curve obtained from the hot torsion test. Therefore such methods do not enable accurate prediction of onset of recrystallisation where slow softening occurs. A new method to convert results from the hot torsion test into flow curves by taking into account the variation of constitutive parameters during deformation is presented. The method represents the torque twist data by a parametric linear least square model in which Euler and hyperbolic coefficients are used as the parameters. A closed form relationship obtained from the mathematical representation of the data is employed next for flow stress determination. Two different solution strategies, the method of normal equations and singular value decomposition, were used for parametric modelling of the data with hyperbolic basis functions. The performance of both methods is compared. Experimental data obtained by FHTTM, a flexible hot torsion test machine developed at IROST, for a C–Mn austenitic steel was used to demonstrate the method. The results were compared with those obtained using constant strain and strain rate hardening characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work, the carbon diffusion in steel, where the carbon diffusivity varies with the carbon content, was solved with the integral methods under the third boundary condition. The variation of carbon diffusivity in steel with the carbon content was described with two different functions ie. linear dependence and exponential dependence. The integral approximation for both cases was improved with the numerical computation to more accurately predict the carbon profiles. The integral solution is more accurate than the formulation based on the assumption of a constant diffusivity or those based on the assumption of a constant diffusivity and/or constant carbon content at part surface. It is also more easily used in practice than the numerical method to describe the carburising process and predict the carbon content at steel surface and carbon profiles in treated layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The carbon diffusion in steel, where the carbon diffusivity varies with the carbon content, was solved with the integral methods under the third boundary condition. The variation of carbon diffusivity in steel with the carbon content was described with two different functions, linear dependence and exponential dependence. The integral approximation for both cases was improved with the numerical computation to more accurately predict the carbon profiles. The integral solution is more accurate than the formulation based on the assumption of a constant diffusivity or those based on the assumption of a constant diffusivity and/or constant carbon content at part surface. It is also more easily used in practice than the numerical method to describe the carburising process and predict the carbon content at steel surface and carbon profiles in treated layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

© 2015 Published by Elsevier Ltd. All rights reserved. Accurate static recrystallization (SRX) models are necessary to improve the properties of austenitic steels by thermo-mechanical operations. This relies heavily on a careful and accurate analysis of "the interrupted test data" and conversion of the heterogeneous deformation data to the flow stress. A "computational-experimental inverse method" was presented and implemented here to analyze the SRX test data, which takes into account the heterogeneous softening of the post-interruption test sample. Conventional and "inverse" methods were used to identify the SRX kinetics for a model austenitic steel deformed at 1273 K (with a strain rate of 1 s-1) using the hot torsion test assess the merits of each method. Typical "static recrystallization distribution maps" in the test sample indicated that, at the onset of the second pass deformation with less than a critical holding time and a given pre-strain, a "partially-recrystallized zone" existed in the cylindrical core of the specimen near its center line. For the investigated scenario, the core was confined in the first half of the gauge radius when the holding time and the maximum pre strain were below 29 s and 0.5, respectively. For maximum pre strains smaller than 0.2, the specimen did not fully recrystallize, even at the gauge surface after holding for 50 s. Under such conditions, the conventional methods produced significant error.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work evaluates the effect of co-existence of a large volume fraction of δ-ferrite on the hot deformation and dynamic recrystallization (DRX) of austenite using comparative hot torsion tests on AISI 304 austenitic and 2205 duplex stainless steels. The comparison was performed under similar deformation conditions (i.e. temperature and strain rate) and also under similar Zener-Hollomon, Z, values. The torsion data were combined with electron backscatter diffraction (EBSD) analysis to study the microstructure development. The results imply a considerable difference between DRX mechanisms, austenite grain sizes and also DRX kinetics of two steels. Whereas austenitic stainless steel shows the start of DRX at very low strains and then development of that microstructure based on the necklace structure, the DRX phenomena in the austenite phase of duplex structure does not proceed to a very high fraction. Also, the DRX kinetics in the austenitic steel are much higher than the austenite phase of the duplex steel. The results suggest that at a similar deformation condition the DRX grain size of austenitic steel is almost three times larger than the DRX grains of austenite phase in duplex steel. Similarly, the ratio of DRX grain size in the austenitic to the duplex structure at the same Z values is about 1.5.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We report on the investigation of the off-stoichiometry and site-occupancy of κ-carbide precipitates within an austenitic (γ), Fe-29.8Mn-7.7Al-1.3C (wt.%) alloy using a combination of atom probe tomography and density functional theory. The chemical composition of the κ-carbides as measured by atom probe tomography indicates depletion of both interstitial C and substitutional Al, in comparison to the ideal stoichiometric L′12 bulk perovskite. In this work we demonstrate that both these effects are coupled. The off-stoichiometric concentration of Al can, to a certain extent, be explained by strain caused by the κ/γ mismatch, which facilitates occupation of Al sites in κ-carbide by Mn atoms (MnγAl anti-site defects). The large anti-site concentrations observed by our experiments, however, can only be stabilized if there are C vacancies in the vicinity of the anti-site.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A magnesium alloy of eutectic composition (33 wt-'%Al) was directionally solidified in mild steel tubes at two growth rates, 32 and 580 mum s(-1,) in a temperature gradient between 10 and 20 K mm(-1). After directional solidification, the composition of each specimen varied dramatically, from 32'%Al in the region that had remained solid to 18%Al (32 mum s(-1) specimen) and 13%Al (580 mum s(-1) specimen) at the plane that had been quenched from the eutectic temperature. As the aluminium content decreased, the microstructure contained an increasing volume fraction of primary magnesium dendrites and the eutectic morphology gradually changed from lamellar to partially divorced. The reduction in aluminium content was caused by the growth of an Al-Fe phase ahead of the Mg-Al growth front. Most of the growth of the Al-Fe phase occurred during the remelting period before directional solidification. The thickness of the Al-Fe phase increased with increased temperature and time of contact with the molten Mg-Al alloy. (C) 2003 Maney Publishing.