40 resultados para COMPATIBLE POLYMER BLENDS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermosetting polymer blends of poly(ethylene oxide) (PEO) and bisphenol-A-type epoxy resin (ER) were prepared using 4,4′-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA) as curing agent. The miscibility and crystallization behavior of MCDEA-cured ER/PEO blends were investigated by differential scanning calorimetry (DSC). The existence of a single composition-dependent glass transition temperature (Tg) indicates that PEO is completely miscible with MCDEA-cured ER in the melt and in the amorphous state over the entire composition range. Fourier-transform infrared (FTIR) investigations indicated hydrogen-bonding interaction between the hydroxyl groups of MCDEA-cured ER and the ether oxygens of PEO in the blends, which is an important driving force for the miscibility of the blends. The average strength of the hydrogen bond in the cured ER/PEO blends is higher than in the pure MCDEA-cured ER. Crystallization kinetics of PEO from the melt is strongly influenced by the blend composition and the crystallization temperature. At high conversion, the time dependence of the relative degree of crystallinity deviated from the Avrami equation. The addition of a non-crystallizable ER component into PEO causes a depression of both the overall crystallization rate and the melting temperature. The surface free energy of folding σe displays a minimum with variation of composition. The spherulitic morphology of PEO in the ER/PEO blends exhibits typical characteristics of miscible crystalline/amorphous blends, and the PEO spherulites in the blends are always completely volume-filling. Real-time small-angle X-ray scattering (SAXS) experiments reveal that the long period L increases drastically with increasing ER content at the same temperatures. The amorphous cured ER component segregates interlamellarly during the crystallization process of PEO because of the low chain mobility of the cured ER. A model describing the semicrystalline morphology of MCDEA-cured ER/PEO blends is proposed based on the SAXS results. The semicrystalline morphology is a stack of crystalline lamellae; the amorphous fraction of PEO, the branched ER chains and imperfect ER network are located between PEO lamellae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has demonstrated a facile route to separate polyester/cotton blend textile waste by a chemical dissolution method. The recovered cellulose from textile waste were used to regenerate a novel composite fibre with improved properties which could potentially be used in textile applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The phase behavior, morphology and crystallization in blends of a low-molecular-weight (Mn = 1400) double-crystalline polyethylene-block-poly(ethylene oxide) (PE-PEO) diblock copolymer with poly(hydroxyether of bisphenol A) (PH) were investigated by differential scanning calorimetry, transmission electron microscopy and small-angle X-ray scattering. The symmetric PE-PEO diblock copolymer consists of a PH-miscible PEO block and a PH-immiscible PE block. However, PH only exhibits partial miscibility with the PEO block of the copolymer in the PH/PE-PEO blends; both macrophase and microphase separations took place. There existed two macrophases in the PH/PE-PEO blends, i.e., a PH-rich phase and a PE-PEO copolymer-rich phase. The PE block of the copolymer in the blends exhibited fractionated crystallization behavior by homogeneous nucleation. There appeared three crystallization exotherms related to the crystallization of the PE block within three different microenvironments in the PH/PE-PEO blends.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: In transmission and scanning electron microscopy imaging, the ability to obtain sufficient contrast between the components of a blend when they are both of a similar chemical structure still remains problematic. This paper investigates the domain morphology of a polymer blend containing two polyamides, nylon 6 and the semi-aromatic polyamide poly(m-xylene adipamide) (MXD6), using scanning electron microscopy in backscattered electron imaging mode. The efficiency of three staining agents, ruthenium tetroxide, phosphotungstic acid and silver sulfide, in obtaining optimum phase contrast between the two polymers is discussed.
RESULTS: The use of silver sulfide as a staining agent was found to be a fast and reliable approach which required basic sample preparation and provided excellent compositional contrast between the phases present in the nylon 6/MXD6 blends compared to the other staining agents.
CONCLUSIONS: The technique described in this paper is believed to be a novel and versatile method that has the potential to further improve the ability to study complex polymer blends where one polymer contains an aromatic ring.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents the fabrication of biodegradable polymer blends and composites with the assistance of ionic liquids. The work included preparation and characterization of cellulose/PCL blend films, cellulose/ PCL-PDMS-PCL blend films, cellulose/ PVAL blend films and cellulose/clay composite films. An efficient and feasible approach of reducing plastic pollution was developed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article, we discuss the phase morphology, thermal, mechanical, and crystallization properties of uncompatibilized and compatibilized polypropylene/polystyrene (PP/PS) blends. It is observed that the Young's modulus increases, but other mechanical properties such as tensile strength, flexural strength, elongation at break, and impact strength decrease by blending PS to PP. The tensile strength and Young's modulus of PP/PS blends were compared with various theoretical models. The thermal stability, melting, and crystallization temperatures and percentage crystallinity of semicrystalline PP in the blends were marginally decreased by the addition of amorphous PS. The presence of maleic anhydride-grafted polypropylene (compatibilizer) increases the phase stability of 90/10 and 80/20 blends by preventing the coalescence. Hence, finer and more uniform droplets of PS dispersed phases are observed. The compatibilizer induced some improvement in impact strength for the blends with PP matrix phase, however fluctuations in modulus, strength and ductility were observed with respect to the uncompatibilized blend. The thermal stability was not much affected by the addition of the compatibilizer for the PP rich blends but shows some decrease in the thermal stability of the blends, where PS forms the matrix. On the other hand, the % crystallinity was increased by the addition of compatibilizer, irrespective of the blend concentration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polypropylene (PP) and polystyrene (PS) blends were prepared by melt processing in a haake at 180 °C. PP/PS blends are immiscible and the blend morphologies were characterized by scanning electron microscopy. The viscoelastic properties were characterized using dynamic mechanical analysis (DMA) with reference to blend ratio. The blend morphologies such as matrix droplet and phase inverted morphologies were observed. The storage modulus of the blends increased with increase in PS content and the value was maximum for neat PS. DMA showed changes in the polystyrene glass transition temperatures (Tg) over the entire composition range. There was a sharp increase in the Tg of PS with increasing PP content in the blend and a 12 °C elevation in Tg was observed. The increase in Tg was explained by proposing a new model based on the physical interaction between the blend components. It is assumed that the different effects by the PP phase resulted in the formation of constrained PS chains leading to high Tg values. The addition of PP-g-MAH has a positive effect on the morphology, increases the storage modulus, and decreases the Tg till 80/20 blends. However, for PP/PS blends with higher concentrations of PS, the PP-g-MAH has little effect or adverse effect on the morphology, and storage modulus, but decreases the Tg.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigated the self-assembled microphase separated morphologies that are obtained in bulk, by the complexation of a semicrystalline poly(ε-caprolactone-dimethyl siloxane-ε-caprolactone) (PCL-PDMS-PCL) triblock copolymer and a homopolymer, poly(hydroxyether of bisphenol A) (PH) in tetrahydrofuran (THF). In these blends, microphase separation takes place due to the disparity in intermolecular interactions; specifically, the homopolymer interacts with PCL blocks through hydrogen bonding interactions. The crystallization, microphase separation and crystalline structures of a triblock copolymer/homopolymer blends were investigated. The phase behavior of the complexes was investigated using small-angle X-ray scattering and transmission electron microscopy. At low PH concentrations, PCL interacts relatively weakly with PH, whereas in complexes containing more than 50 wt% PH, the PCL block interacts significantly with PH, leading to the formation of composition-dependent nanostructures. SAXS and TEM results indicate that the lamellar morphology of neat PCL-PDMS-PCL triblock copolymer changes into disordered structures at 40-60 wt% PH. Spherical microdomains were obtained in the order of 40-50 nm in complexes with 80 wt% PH. At this concentration, the complexes show a completely homogenous phase of PH/PCL, with phase-separated spherical PDMS domains. The formation of these nanostructures and changes in morphology depends on the strength of hydrogen bonding between PH/PCL blocks and also the phase separated PDMS blocks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends, with varying concentrations, were prepared by melt-mixing technique. The miscibility is ensured by fixing the acrylonitrile (AN) content of styrene acrylonitrile (SAN) as 25% by weight. The blends were transparent as well. The Fourier transform infrared spectroscopic (FTIR) studies did not reveal any specific interactions, supporting the well accepted 'copolymer repulsion effect' as the driving mechanism for miscibility. Addition of SAN increased the stability of PMMA towards ultraviolet (UV) radiations and thermal degradation. Incorporation of even 0.05% by weight of multi-walled carbon nanotubes (MWCNTs) significantly improved the UV absorbance and thermal stability. Moreover, the composites exhibited good strength and modulus. However, at higher concentrations of MWCNTs (0.5 and 1% by weight) the thermo-mechanical properties experienced deterioration, mainly due to the agglomeration of MWCNTs. It was observed that composites with 0.05% by weight of finely dispersed and well distributed MWCNTs provided excellent protection in most extreme climatic conditions. Thus, PMMA/SAN/MWCNTs composites can act as excellent light screens and may be useful, as cost-effective UV absorbers, in the outdoor applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermoplastic toughened epoxy resins are widely used as matrices in modern prepreg systems.Different curing conditions play a great role in affecting the cure kinetics and phase behaviour of thermoplastic modified epoxies which further result in different mechanical properties of polymer matrix composites.Since the morphology of the cured thermoplastic/epoxy blends is directly related to the mechanical properties,it is essential to control processing conditions for obtaining desirable morphology.A polyethersulphone (PES) modified multifunctional epoxies,triglycidylaminophenol (TGAP) and tetraglycidyldiaminodiphenylmethane (TGDDM),was used for investigation.The cure kinetics and cured morphology of polymer blends heated at different heating rates and cured at different temperature were studied.It is shown that higher cure temperature and higher heating rate display similar effects in the epoxy conversion and the domain size of phase separated structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most industrially applied polymer resins and composites have low surface free energy and lack polar functional groups on their surface, resulting in inherently poor adhesion properties. A strong research momentum to understand polymer adhesion in the last decade has been motivated by the growing needs of the automotive and aerospace industries for better adhesion of components and surface coatings. This paper reviews the recent research efforts on polymer adhesion with a special focus on adhesion mechanisms. It starts with an introduction to adhesion with explanatory notes on adhesion phenomena. Recent research on the adhesion mechanisms of mechanical coupling, chemical bonding and thermodynamic adhesion is then discussed. The area of adhesion promoters is reviewed with the focus on plasma and chemical treatments, along with direct methods for adhesion measurement. The topics of polymer blends and reactive polymerization are considered and the interactions with adhesion mechanisms are reported. The concluding section provides recommendations regarding future research on the contentious aspects of currently accepted adhesion mechanisms and on strategies for enhancing polymer adhesion strength.