8 resultados para COEVOLUTION

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wildlife pathogens can alter host fitness. Low pathogenic avian influenza virus (LPAIV) infection is thought to have negligible impacts on wild birds; however, effects of infection in free-living birds are largely unstudied. We investigated the extent to which LPAIV infection and shedding were associated with body condition and immune status in free-living mallards (Anas platyrhynchos), a partially migratory key LPAIV host species. We sampled mallards throughout the species' annual autumn LPAIV infection peak, and we classified individuals according to age, sex, and migratory strategy (based on stable hydrogen isotope analysis) when analyzing data on body mass and five indices of immune status. Body mass was similar for LPAIV-infected and noninfected birds. The degree of virus shedding from the cloaca and oropharynx was not associated with body mass. LPAIV infection and shedding were not associated with natural antibody (NAbs) and complement titers (first lines of defense against infections), concentrations of the acute phase protein haptoglobin (Hp), ratios of heterophils to lymphocytes (H:L ratio), and avian influenza virus (AIV)-specific antibody concentrations. NAbs titers were higher in LPAIV-infected males and local (i.e., short distance) migrants than in infected females and distant (i.e., long distance) migrants. Hp concentrations were higher in LPAIV-infected juveniles and females compared to infected adults and males. NAbs, complement, and Hp levels were lower in LPAIV-infected mallards in early autumn. Our study demonstrates weak associations between infection with and shedding of LPAIV and the body condition and immune status of free-living mallards. These results may support the role of mallards as asymptomatic carriers of LPAIV and raise questions about possible coevolution between virus and host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The domestic dog has undergone extensive artificial selection resulting in an extreme diversity in body size, personality, life‐history, and metabolic traits among breeds. Here we tested whether proactive personalities (high levels of activity, boldness, and aggression) are related to a fast “pace of life” (high rates of growth, mortality, and energy expenditure). Data from the literature provide preliminary evidence that artificial selection on dogs (through domestication) generated variations in personality traits that are correlated with life histories and metabolism. We found that obedient (or docile, shy) breeds live longer than disobedient (or bold) ones and that aggressive breeds have higher energy needs than unaggressive ones. These correlations could result from either human preference for particular trait combinations or, more likely, correlated responses to artificial selection on personality. Our results suggest the existence of a general pace‐of‐life syndrome arising from the coevolution of personality, metabolic, and life‐history traits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coevolution is evolution in one species in response to selection imposed by a second species, followed by evolution in the second species in response to reciprocal selection imposed by the first species. Although reciprocal selection is a prerequisite of coevolution, it has seldom been documented in natural populations. We examined the feasibility of reciprocal selection in a simple host‐parasite system consisting of feral pigeons (Columba livia) and their Ischnoceran feather lice (Phthiraptera: Insecta). We tested for a selective effect of parasites on hosts with experimentally altered defenses and for a selective effect of host defense on a component of parasite escape. Previous work indicates that pigeons control lice through efficient preening, while lice escape from preening using complex avoidance behavior. Our results show that feral pigeons with impaired preening, owing to slight bill deformities, have higher louse loads than pigeons with normal bills. We use a controlled experiment to show that high louse loads reduce the survival of pigeons, suggesting that lice select for efficient preening and against bill deformities. In a reciprocal experiment, we demonstrate that preening with a normal bill selects for small body size in lice, which may facilitate their escape from preening. The results of this study verify a crucial element of coevolutionary theory by identifying likely targets of reciprocal phenotypic selection between host and parasite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been a dramatic rise in the prevalence of IgE-mediated food allergy over recent decades, particularly among infants and young children. The cause of this increase is unknown but one putative factor is a change in the composition, richness and balance of the microbiota that colonize the human gut during early infancy. The coevolution of the human gastrointestinal tract and commensal microbiota has resulted in a symbiotic relationship in which gut microbiota play a vital role in early life immune development and function, as well as maintenance of gut wall epithelial integrity. Since IgE mediated food allergy is associated with immune dysregulation and impaired gut epithelial integrity there is substantial interest in the potential link between gut microbiota and food allergy. Although the exact link between gut microbiota and food allergy is yet to be established in humans, recent experimental evidence suggests that specific patterns of gut microbiota colonization may influence the risk and manifestations of food allergy. An understanding of the relationship between gut microbiota and food allergy has the potential to inform both the prevention and treatment of food allergy. In this paper we review the theory and evidence linking gut microbiota and IgE-mediated food allergy in early life. We then consider the implications and challenges for future research, including the techniques of measuring and analyzing gut microbiota, and the types of studies required to advance knowledge in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since their introduction to the toad-free Australian continent cane toads (Bufo marinus) have caused a dramatic increase in naïve varanid mortality when these large lizards attempt to feed on this toxic amphibian. In contrast Asian–African varanids, which have coevolved with toads, are resistant to toad toxin. Toad toxins, such as Bufalin target the H1-H2 domain of the α1 subunit of the sodium-potassium-ATPase enzyme. Sequencing of this domain revealed identical nucleotide sequences in four Asian as well as in three African varanids, and identical sequences in all 11 Australian varanids. However, compared to the Asian–African varanids, the Australian varanids showed four-base-pair substitutions, resulting in the alteration in three of the 12 amino acids representing the H1-H2 domain. The phenotypic effect of the substitutions was investigated in human embryonic kidney (HEK) 293 cells stably transfected with the Australian and the Asian–African H1-H2 domains. The transfections resulted in an approximate 3000-fold reduction in resistance to Bufalin in the Australian HEK293 cells compared to the Asian–African HEK293 cells, demonstrating the critical role of this minor mutation in providing Bufalin resistance. Our study hence presents a clear link between genotype and phenotype, a critical step in understanding the evolution of phenotypic diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathogens have been hypothesized to play a major role in host diversity and speciation. Susceptibility of hybrid hosts to pathogens is thought to be a common phenomenon that could promote host population divergence and subsequently speciation. However, few studies have tested for pathogen infection across animal hybrid zones while testing for codivergence of the pathogens in the hybridizing host complex. Over 8 y, we studied natural infection by a rapidly evolving single-strand DNA virus, beak and feather diseases virus (BFDV), which infects parrots, exploiting a host-ring species complex (Platycercus elegans) in Australia. We found that host subspecies and their hybrids varied strikingly in both BFDV prevalence and load: both hybrid and phenotypically intermediate subspecies had lower prevalence and load compared with parental subspecies, while controlling for host age, sex, longitude and latitude, as well as temporal effects. We sequenced viral isolates throughout the range, which revealed patterns of genomic variation analogous to Mayr's ring-species hypothesis, to our knowledge for the first time in any host-pathogen system. Viral phylogeny, geographic location, intraspecific host density, and parrot community diversity and composition did not explain the differences in BFDV prevalence or load between subpopulations. Overall, our analyses suggest that functional host responses to infection, or force of infection, differ between subspecies and hybrids. Our findings highlight the role of host hybridization and clines in altering host-pathogen interactions, dynamics that can have important implications for models of speciation with gene flow, and offer insights into how pathogens may adapt to diverging host populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The arid and semi-arid zones of Australia are characterized by highly variable and unpredictable environmental conditions which affect the provision of resources for flora and fauna. Environments which are highly unpredictable in terms of both resource access and distribution are likely to select for a variety of adaptive behavioral strategies, intrinsically linked to the physiological control of behavior. How unpredictable resource distribution has affected the coevolution of behavioral strategies and physiology has rarely been quantified, particularly not in Australian birds. We used a captive population of wild-derived zebra finches to test the relationships between behavioral strategies relating to food access and physiological responses to stress and body condition. We found that individuals which were in poorer body condition and had higher peak corticosterone levels entered baited feeders earlier in the trapping sequence of birds within the colony. We also found that individuals in poorer body condition fed in smaller social groups. Our data show that the foraging decisions which individuals make represent not only a trade-off between food access and risk of exposure, but their underlying physiological response to stress. Our data also suggest fundamental links between social networks and physiological parameters, which largely remain untested. These data demonstrate the fundamental importance of physiological mechanisms in controlling adaptive behavioral strategies and the dynamic interplay between physiological control of behavior and life-history evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intraspecific differences in sensory perception are rarely reported but may occur when a species range extends across varying sensory environments, or there is coevolution between the sensory system and a varying signal. Examples in colour vision and colour signals are rare in terrestrial systems. The tawny dragon lizard Ctenophorus decresii is a promising candidate for such intraspecific variation, because the species comprises two geographically and genetically distinct lineages in which throat colour (a social signal used in intra- and inter-specific interactions) is locally adapted to the habitat and differs between lineages. Male lizards from the southern lineage have UV-blue throats, whereas males from the northern lineage are polymorphic with four discrete throat colours that all show minimal UV reflectance. Here, we determine the cone photoreceptor spectral sensitivities and opsin expression of the two lineages, to test whether they differ, particularly in the UV wavelengths. Using microspectrophotometry on retinal cone photoreceptors, we identified a long-wavelength-sensitive (LWS) visual pigment, a 'short' and 'long' medium-wavelength-sensitive (MWS) pigment and a short-wavelength-sensitive (SWS) pigment, all of which did not differ in λmax between lineages. Through transcriptome analysis of opsin genes we found that both lineages express four cone opsin genes, including the SWS1 opsin with peak sensitivity in the UV range, and that amino acid sequences did not differ between lineages with the exception of a single leucine to valine substitution in the RH2 opsin. Counts of yellow and transparent oil droplets associated with LWS+MWS and SWS+UVS cones, respectively, showed no difference in relative cone proportions between lineages. Therefore, contrary to predictions, we find no evidence of differences between lineages in single cone photoreceptor spectral sensitivity or opsin expression. However, we confirm the presence of four single cone classes, suggesting tetrachromacy in C. decresii, and we also provide the first evidence of UV sensitivity in agamid lizards.