3 resultados para CO-POLYMERS

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conductivities greater than or equal to 10−8 S cm−1 at Tg are reported in polymer electrolytes based on lithium triflate salt and a series of polymers whose Tg is greater than 90°C. The highest conductivities were observed for poly(acrylonitrile) based systems with salt concentrations greater than 60 wt.%. The conductivity in all cases investigated increases with increasing salt concentration. 1H-NMR T2 relaxation measurements suggest that Tg decreases with increasing salt content and confirms that these materials are glassy at room temperature and hence that the conductivity is significantly decoupled from the structural relaxations. It appears that the nature of the polymer is important in determining the level of ionic conductivity, possibly due to differences in polymer coordinating ability or differences in Tg. Polymer-in-salt mixtures based on a tetra-alkyl ammonium imide molten salt and several high Tg polymers are also reported. The conductivities of these mixtures appear to be independent of the polymer type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium-based batteries are being considered to replace Li-based batteries for the fabrication of large-scale energy storage devices. One of the main obstacles is the lack of safe and conductive solid Na-ion electrolytes. A Na-ion polymer based on the (4-styrenesulfonyl(trifluromethylsulfonyl) imide anion, Na[STFSI], has been prepared by a radical polymerization process and its conductive properties determined. In addition, a number of multi-component polymers were synthetized by co-reaction of two monomers: Na[STFSI] and ethyl acrylate (EA) at different ratios. The structural and phase characterizations of the polymers were probed by various techniques (DSC, TGA, NMR, GPC, Raman, FTIR and Impedance spectroscopy). Comparative studies with blends of the homopolymers Na[PSTFSI] and poly(ethylacrylate) (PEA) have also been performed. The polymers are all thermally stable up to 300°C and the ionic conductivity of EA copolymers and EA blends are about 1-3 orders of magnitude higher than that of Na[PSTFSI]. The highest conductivity measured at 100°C was found for Na[PSTFSI-blend-5EA] at 7.9 × 10-9 S cm-1, despite being well below its Tg. Vibrational spectroscopy indicates interaction between Na+ and the EA carbonyl groups, with a concomitant decrease in the sulfonyl interaction, facilitating Na+ motion, as well as lowering Tg.