7 resultados para CO-CONDENSATION

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In our previous work, we have produced a photochromic wool fabric by applying a thin layer of hybrid silica-photochromic dye onto the wool surface. The coating showed a very fast optical response, but had little influence on the fabric handle, however durability was low. In this context, we reported that durability of the hybrid layer can be improved by introducing epoxy groups into the silica matrix via co-hydrolysis and co-condensation of an alkyl trialkoxysilane (ATAS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). The presence of epoxy groups in the silica enhanced both washing and abrasion durabilities. Also, the optical response speed was slightly increased as well. Effects of the type of alkyl silane and the GPTMS:alkyl silane ratio on the coating durability, fabric handle and optical response were examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method has been developed for producing photochromic wool fabric by applying a layer of hybrid silica containing a photochromic dye onto wool fibres. A number of different hybrid silicas were prepared by the sol-gel technique involving co-hydrolysis and co-condensation of alkyltrialkoxysilanes together with 3-glycidoxypropyltrimethoxysilane. With the dye Photorome II, it was possible to obtain a photo chromic coating which showed fast optical response. The coating had only a slight effect on the fabric handle. The durability of the coating appeared to be acceptable, at least for fashion wear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a silica sol prepared by co-hydrolysis and co-condensation of TEGS (Tetraethylrthosilicate) and alkyl silane under alkaline condition was applied to polyester, wool, and cotton fabrics. The water contact angle measurement indicated considerable increase in the surface hydrophobicity of the sol-treated fabrics. Five different alky silanes were used, namely methyltritthoxysilane (MTES), pheryl triethoxysilane (PTES), n-octyltricthoxysilane (OTES), hexadecyl trimethoxysilan (HDTMS), and tridecafluorooctyl triethoxysilane (FAS), and the water contact anglc (CA) for the coated fabrics ranged between 1300 and 174°. The alkyl silane used influenced the CA valuc, and the silica coating from FAS, HDTMS and PTES snowed CA value greater than ISO', indicating the formation of superhydrophobicity. The fabric coated by the fluorinated silica (TEOS/FAS) has a water contact angle as high as 174°. The treated polyester fabric showed a slightly higher CA value than the wool and cotton fabrics, under the same coating condition.
The coating surface was characterized by SEM, EDX, TEM, FTlR, XPS and AFM. The results showed that silica nanoparticles with thc sizc in the range of 50-ISOnm werc formed in the cohydrolyzed silica sol, and these particles had a core-shell structure with many alkyl groups gathering on the surface region. The formation of superhydrophobic surface was attributed to the nano-structured surface coating with a low surface energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Particle-containing silica sol was synthesized by co-hydrolysis and co-condensation of two silane precursors, tetraethylorthosilicate (TEOS) and an organic silane composed of a non-hydrolyzable functional group (e.g., alkyl, flourinated alkyl, and phenyl), and used to produce superhydrophobic coatings on fabrics. it has been revealed that the non-hydrolyzable functional groups in the organic silanes have a considerable influence on the fabric surface wettability. When the functional group was long chain alkyl (C16), phenyl, or flourinated alkyl (C8), the treated surfaces were highly superhydrophobic with a water contact angle (CA) greater than 170°, and the CA value was little affected by the fabric type. The washing durability of the superhydrophobic coating was improved by introducing the third silane containg epoxide group, 3-glycidoxypropyltrimethoxsilane (GPTMS), for synthesis. Although the presence of epoxide groups in the coating slightly reduced the fabrics' superhydrophobicity, the washing durability was considerably improved when polyester and cotton fabrics were used as substrates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trans-4- [p- (N, N-Die (2-hydroxyethyl)) styryl] -N- ethyl pyridinium bromide (DHEASPBr-C2), a hemicyanine fluorescent dye, was encapsulated into silica nanoparticles by co-hydrolysis and co-condensation of organosilanes in the presence of the dye. The dye containing silica nanoparticles were applied onto cotton fabrics. Scanning electron microscopy (SEM), UV–vis spectra, single-photon emission fluorescence spectra and reflectance spectra of the samples were characterized. The SEM results showed that the particle size (ranging from 100-200 nm) and dye encapsulating (1.5-8.1 mg dye per g silica matrix) could be adjusted by the concentration of fluorescent dye and organosilanes. The reflectance of the treated cotton fabrics showed that there were obvious adsorption spectra in 410 - 540 nm and emission spectra in 560 - 700 nm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previously, we have reported a method for producing photochromic wool fabric by applying a thin layer of hybrid silica-photochromic dye onto the wool surface. While the photochromic coating showed a very fast optical response and had little influence on the fabric handle, its durability was poor. In this study, the durability of the photochromic coating layer was improved by introducing epoxy groups into the silica matrix via co-hydrolysis and co-condensation of an alkyl trialkoxysilane compound (ATAS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). The presence of epoxy groups in the silica enhanced both washing and abrasion durability or fastness. In addition, the optical response speed was slightly increased as well. Effects of the type of alkyl silane and the GPTMS/alkyl silane ratio on the coating durability, fabric handle and optical response were examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis, structural characterization, and porous properties of two isomeric supramolecular complexes of ([Cd(NH2—bdc)(bphz)0.5 ]⋅DMF⋅H2O}n (NH2 —bdc=2-aminobenzenedicarboxylic acid, bphz=1,2-bis(4-pyridylmethylene)hydrazine) composed of a mixed-ligand system. The first isomer, with a paddle-wheel-type Cd2 (COO)4 secondary building unit (SBU), is flexible in nature, whereas the other isomer has a rigid framework based on a μ-oxo-bridged Cd2(μ-OCO)2 SBU. Both frameworks are two-fold interpenetrated and the pore surface is decorated with pendant -NH2 and =N—N= functional groups. Both the frameworks are nonporous to N2 , revealed by the type II adsorption profiles. However, at 195 K, the first isomer shows an unusual double-step hysteretic CO2 adsorption profile, whereas the second isomer shows a typical type I CO2 profile. Moreover, at 195 K, both frameworks show excellent selectivity for CO2 among other gases (N2 , O2 , H2 , and Ar), which has been correlated to the specific interaction of CO2 with the -NH2 and =N—N= functionalized pore surface. DFT calculations for the oxo-bridged isomer unveiled that the -NH2 group is the primary binding site for CO2 . The high heat of CO2 adsorption (ΔHads =37.7 kJ mol-1) in the oxo-bridged isomer is realized by NH2 ⋅⋅⋅CO2 /aromatic π⋅⋅⋅CO2 and cooperative CO2 ⋅⋅⋅CO2 interactions. Further, postsynthetic modification of the -NH2 group into -NHCOCH3 in the second isomer leads to a reduced CO2 uptake with lower binding energy, which establishes the critical role of the -NH2 group for CO2 capture. The presence of basic -NH2 sites in the oxo-bridged isomer was further exploited for efficient catalytic activity in a Knoevenagel condensation reaction.