8 resultados para CERIUM OXIDE CATALYSTS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With an increase in use of nanoparticles (NPs) in day to day products, these particles eventually enter the wastewater treatment plant and get removed from the effluent while getting accumulated in the sludge at ever increasing concentrations. These NPs have a potential for causing inhibition in sludge digestion processes. Therefore, this research focused on the effects of cerium (IV) oxide (CeO2) and zinc oxide (ZnO) NPs on biogas production from sludge. The inhibition effects were investigated by studying toxicity of the said NPs on Escherichia coli. The results showed that CeO2 and ZnO NPs showed some degree of inhibition in biogas production with 65.3% biogas reduction at ZnO NPs at 1000 mg/L concentration. Conversely, CeO2 at low concentration of 10 mg/L lead to an increase biogas generation by 11%. The tolerable exposure concentrations for ZnO were determined to be 100 and 500 mg/L, where the system could overcome the inhibition effect after 14 days of incubation. The bacterial toxicity test showed that both nanoparticles were toxic for bacteria leading to biogas reduction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cerium diphenyl phosphate (Ce(dpp)3) has previously been shown to be a strong corrosion inhibitor for aluminium-copper magnesium alloy AA2024-T3 and AA7075 in chloride solutions. Surface characterisation including SEM and ToF-SIMS coupled with electrochemical impedance spectroscopy (EIS) measurements are used to propose a mechanism of corrosion inhibition which appears to involve the formation of a complex oxide film of aluminium and cerium also incorporating the organophosphate component. The formation of a thin complex film consisting of hydrolysis products of the Ce(dpp)3 compound and aluminium oxide is proposed to lead to the observed inhibition. SEM analysis shows that some intermetallics favour the creation of thicker deposits predominantly containing cerium oxide compounds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Synthesis of molecular-level multiple-component composites are particularly challenging due to the lack of direct bonding among different components. In this study, molecular-level graphene oxide (GO)-polyacryl amide (PAM)-CeOx composites were successfully synthesized, using the simultaneous polymerization and crosslinking strategy. Attenuated total reflection Fourier transform infrared (ATR-FTIR) and nuclear magnetic resonance (NMR) techniques confirmed that polyacryl amide (PAM) chains were successfully grafted onto the surface of GO. X-ray photoelectron spectroscopic (XPS) and X-ray diffraction (XRD) analyses further revealed the characteristic signals of cerium elements and CeO2 phase respectively. Scanning electron microscopy (SEM) showed that the surface morphology of the GO-PAM-CeOx composites was substantially thicker and rougher than those of the original GO. Further exploration of the reaction mechanism clearly demonstrate the existence of strong chelating interaction among PAM chains and Ce(IV) ions. In particular, the polymerization of acryl amide monomers and the crosslinking reaction between PAM and Ce(IV) or Ce(III) ions were realized simultaneously, leading to the final formation of molecular-level GO-PAM-CeOx composites. Moreover, the as-synthesized GO-PAM-CeOx composites were capable of effectively decomposing Rhodamine B under simulated sunlight, making it a potential candidate as a new photo catalyst. To sum up, this report demonstrates the potential utility of simultaneous polymerization and crosslinking method for the synthesis of other multiple-component composites at molecular-level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aligned carbon nanotubes (CNTs) can be readily synthesized on quartz or silicon-oxide-coated Si substrates using a chemical vapor deposition method, but it is difficult to grow them on pure Si substrates without predeposition of metal catalysts. We report that aligned CNTs were grown by pyrolysis of iron phthalocyanine at 1000 °C on the templates created on Si substrates with simple mechanical scratching. Scanning electron microscopy and x-ray energy spectroscopy analysis revealed that the trenches and patterns created on the surface of Si substrates were preferred nucleation sites for nanotube growth due to a high surface energy, metastable surface structure, and possible capillarity effect. A two-step pyrolysis process maintained Fe as an active catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corrosion inhibition mechanisms of new cerium and lanthanum cinnamate based compounds have been investigated through the surface characterisation of the steel exposed to NaCl solution of neutral pH. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to identify the nature of the deposits on the metal surface and demonstrated that after accelerated tests the corrosion product commonly observed on steel (i.e. lepidocrocite, γ-FeOOH) is absent. The cinnamate species were clearly present on the steel surface upon exposure to NaCl solution for short periods and appeared to coordinate through the iron. At longer times the Rare Earth Metal (REM) oxyhydroxide species are proposed to form as identified through the bands in the 1400–1500 cm−1 region. These latter bands have been previously assigned to carbonate species adsorbed onto REM oxyhydroxide surfaces. The protection mechanism appears to involve the adsorption of the REM–cinnamate complex followed by the hydrolysis of the REM to form a barrier oxide on the steel surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perovskite-type oxide LaCoO3 nanofibers have been fabricated by electrospinning and subsequent calcination technology. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction were used to characterize the morphology and structure. Rhodamine B (RhB) was used to evaluate the ultraviolet photocatalytic activity of the as-prepared nanofibers. The effect of calcination temperature and pH of the reaction solution on the decolorization of RhB were investigated. Results showed that the samples calcined at 600°C exhibited the best photocatalytic activity at pH 4. Additionally, the recycling experiments confirmed the attractive stability of the catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that cerium diphenyl phosphate (Cedpp) 3 is a very effective inhibitor of corrosion of aluminium alloys in chloride solutions. This paper describes the results of further studies using electrochemical and constant immersion corrosion tests to compare the effectiveness of Ce(dpp) 3 and Mischmetal diphenyl phosphate Mm(dpp) 3 as inhibitors of corrosion pitting on AA7075-T651 aluminium alloy. The results shows that both Ce(dpp) 3 and Mm(dpp) 3 are excellent inhibitors of pitting corrosion of this alloy in very aggressive environments of continuously aerated 0.1M and 1.0M sodium chloride (NaCl) solutions. Polarisation tests indicate that these compounds act as a cathodic inhibitors by reducing the rate of the oxygen reduction reaction, which results in a decreased corrosion current density and a separation of the corrosion potential from the pitting potential. This inhibition is thought to be due to the formation of a surface film consisting of rare earth metal oxide, aluminium oxide and a cerium-aluminium organo-phosphate complex. Surface analysis data from scanning electron microscopy and X-ray Energy Dispersive Spectroscopy show the complex nature of this protective film. This work further develops our understanding about the mechanisms through which these complex films form, and how inhibition occurs in the presence of these compounds.