54 resultados para CELLULOSE-ACETATE

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aligned nanofiber mats were prepared from cellulose acetate using an electrospinning technique. The nanofiber mats were then immersed in an ethanol/acetone mixture. The solvent treatment led to denser, more compact fibrous structure and slight decrease in fiber alignment. It increased fiber diameter and polymer crystallinity within fibers. These effects resulted in increase in the tensile strength of fibrous mats. Solvent treatment may offer a simple, efficient approach to improve the mechanical strength of nanofibrous mats.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nitrogen-functionalized carbon nanofibers (N-CNFs) were prepared by carbonizing polypyrrole (PPy)-coated cellulose NFs, which were obtained by electrospinning, deacetylation of electrospun cellulose acetate NFs, and PPy polymerization. Supercapacitor electrodes prepared from N-CNFs and a mixture of N-CNFs and Ni(OH)2 showed specific capacitances of ∼236 and ∼1045 F g(-1), respectively. An asymmetric supercapacitor was further fabricated using N-CNFs/Ni(OH)2 and N-CNFs as positive and negative electrodes. The supercapacitor device had a working voltage of 1.6 V in aqueous KOH solution (6.0 M) with an energy density as high as ∼51 (W h) kg(-1) and a maximum power density of ∼117 kW kg(-1). The device had excellent cycle lifetime, which retained ∼84% specific capacitance after 5000 cycles of cyclic voltammetry scans. N-CNFs derived from electrospun cellulose may be useful as an electrode material for development of high-performance supercapacitors and other energy storage devices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Blends between the widely used thermoset resin, epoxy, and the most abundant organic material, natural cellulose are demonstrated for the first time. The blending modification induced by charge transfer complexes using a room temperature ionic liquid, leads to the formation of thermally flexible thermoset materials. The blend materials containing low concentrations of cellulose were optically transparent which indicates the miscibility at these compositions. We observed the existence of intermolecular hydrogen bonding between epoxy and cellulose in the presence of the ionic liquid, leading to partial miscibility between these two polymers. The addition of cellulose improves the tensile mechanical properties of epoxy. This study reveals the use of ionic liquids as a compatible processing medium to prepare epoxy thermosets modified with natural polymers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbon nanofibers with inter-bonded fibrous structure show high supercapacitor performance when being used as electrode materials. Their preparation is highly desirable from cellulose through a pyrolysis technique, because cellulose is an abundant, low cost natural material and its carbonization does not emit toxic substance. However, interconnected carbon nanofibers prepared from electrospun cellulose nanofibers and their capacitive behaviors have not been reported in the research literature. Here we report a facile one-step strategy to prepare inter-bonded carbon nanofibers from partially hydrolyzed cellulose acetate nanofibers, for making high-performance supercapacitors as electrode materials. The inter-fiber connection shows considerable improvement in electrode electrochemical performances. The supercapacitor electrode has a specific capacitance of ∼241.4 F g-1 at 1 A g-1 current density. It maintains high cycling stability (negligible 0.1% capacitance reduction after 10,000 cycles) with a maximum power density of ∼84.1 kW kg-1. They may find applications in the development of efficient supercapacitor electrodes for energy storage applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, a series of fibrous membranes made from cellulose acetate (CA) and polyester urethane (PEU) by co-electrospining or blend-electrospining were evaluated for drug release kinetics, in vitro anti-microbial activity and in vivo would healing performance when used as wound dressings. To stop common clinical infections, an antibacterial agent, Polyhexamethylene Biguanide (PHMB) was incorporated into e-spun fibres. The presence of CA in the wound healing membrane was found to improve hydrophilicity and permeability to air and moisture. The in vivo tests indicated that the addition of PHMB and CA considerably improved the wound healing efficiency. CA fibres became slightly swollen upon contacting with the wound exudates. It can not only speed up the liquid evaporation but also create a moisture environment for wound recovery. The drug release dynamics of membranes was controlled by the structure of membranes and component rations within membranes. The lower ration of CA:PEU retained the sound mechanical properties of membranes, and also reduced the boost release effectively and slowed down diffusion of antibacterial agent during in vitro tests. The controlled-diffusion membranes exert long-term anti-infective effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanofibres having a parallel line surface texture were electrospun from cellulose acetate butyrate solutions using a solvent mixture of acetone and N,N'-dimethylacetamide. The formation mechanism of the unusual surface feature was explored and attributed to the formation of voids on the jet surface at the early stage of electrospinning and subsequent elongation and solidification of the voids into a line surface structure. The fast evaporation of a highly volatile solvent, acetone, from the polymer solution was found to play a key role in the formation of surface voids, while the high viscosity of the residual solution after the solvent evaporation ensured the line surface to be maintained after the solidification. Based on this principle, nanofibres having a similar surface texture were also electrospun successfully from other polymers, such as cellulose acetate, polyvinylidene fluoride, poly(methyl methacrylate), polystyrene and poly(vinylidene fluoride-co-hexafluoropropene), either from the same or from different solvent systems. Polarized Fourier transform infrared spectroscopy was used to measure the polymer molecular orientation within nanofibres. Schwann cells were grown on both aligned and randomly oriented nanofibre mats. The parallel line surface texture assisted in the growth of Schwann cells especially at the early stage of cell culture regardless of the fibre orientation. In contrast, the molecular orientation within nanofibres showed little impact on the cell growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, permeate from a hollow fiber polyethylene (PE) membrane bio-reactor (MBR) system treating synthetic agricultural wastewater was fed into a cellulose acetate brackish water reverse osmosis (BWRO30 2540) membrane system; three different trans-membranes pressures (TMPs) of 1000, 2500, and 4000 kPa were selected to evaluate the system performance in terms of general operating parameters as well as the removal of chosen important potential fouling water quality parameters. The results showed that highest corrected permeate flux rate was at a TMP of 2500 kPa, whereas lowest recorded at a TMP of 4000 kPa. Similar situation prevailed in water recovery rate. But temperature corrected specific fluxes decreased as the applied TMPs increased. In all selected TMPs, more than 96% of salinity was removed. Permeate from MBR as feed to reverse osmosis required frequent chemical cleaning than the microfiltration/ultrafiltration (MF/UF) permeates and granular media filter (GMF) filtered in order to maintain the required rate of product water. One of the reasons for this frequent chemical cleaning is due to higher total organic carbon as well as total nitrogen (TN) in the MBR permeate. This result needs to be further evaluated through field trials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanofibers possess high surface area and excellent porosity. Though nanofibers can be produced by a variety of techniques, electrospinning stands distinct because of its simplicity and flexibility in processing different polymer materials, and ability to control fiber diameter, morphology, orientation, and chemical component. Nonetheless, electrospun nanofibers are predominantly produced in the form of randomly oriented fiber webs, which restrict their wide use. Converting nanofibers into twisted continuous bundles, i.e., nanofiber yarns, can improve their strength and facilitate their subsequent processes, but remains challenging to make. Nanofiber yarns also create enormous opportunities to develop well-defined three-dimensional nanofibrous architectures. This review article gives an overview of the state-of-the-art techniques for electrospinning of nanofiber yarns and control of nanofiber alignment. A detailed account on techniques to produce twisted/non-twisted short bundles and continuous yarns are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A phase change material (PCM) from a mixture of plant oils was incorporated into electrospun poly(vinyl alcohol) (PVA) nanofibers using an emulsion electrospinning technique. Effects of PCM and PVA content in the emulsions on nanofiber morphology, heat properties, and phase change stability were examined. Higher PCM loadings in the nanofibers led to increased fiber diameter, gouged fiber surfaces, and higher heat enthalpies. The fibers maintained their morphological integrity even if the PCM melted. They showed reliable heat-regulating performance which can undergo at least 100 cycles of phase change. Such PCM fibers may be used for the development of thermoregulating fabrics or in passive heat storage devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of ionic liquid solvents for thespinning of regenerated cellulose fibres has thepotential to produce both technical and textile graderegenerated cellulose fibres. When spinning fibres,many parameters impact the material properties of thespun fibre. In this study, key wet spinning parametershave been investigated for the development of regeneratedcellulose fibres from ionic liquid solutions. Thecoagulation and associated diffusion equilibrium werecalculated for two imidazolium-based ILs, and it wasfound that the anion largely influenced the coagulationkinetics. This was likely due to the associationbetween the anion of the IL and cellulose. Theorientation of the polymer chains is known to influencethe mechanical properties greatly; previously, hotstretching was used to orientate cellulose acetate. Herewe investigated this influence on the mechanicalproperties of regenerated cellulose fibres by applying apost stretch at different stretch ratios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, the carbonization of two Lyocell type regenerated cellulose fibres is reported. Commercially available Lyocell as well as the experimental Lyocell type fibre known as Ioncell-F spun from the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene-1-ium acetate ([DBNH]OAc) is investigated, which supports higher draw ratio and thus improves precursor mechanical properties. Lyocell fibres are known to have improved mechanical properties over other regenerated cellulose fibres and are therefore considered to be better carbon fibre precursor candidates. The Lyocell fibres used in this study are carbonized utilizing a scaled down identical replica of an in use carbon fibre line. The importance of this is the ability to assess the performance of the Lyocell fibres under more realistic continuous carbonization processing conditions. The tensile properties, morphology, and chemical composition of all fibres are determined. It is shown that by changing the carbonization temperature and atmosphere fibres with different mechanical properties and diameter can be produced. Elemental analysis confirms that each fibre has a carbon content of ≥90%.