4 resultados para CE-BEM

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complex exponential basis expansion model (CE-BEM) provides an accurate description for the time-varying (TV) channels encountered in mobile communications. Many blind channel identification and equalization approaches based on the CE-BEM require precise knowledge of the basis frequencies of TV channels. Existing methods for basis frequency estimation usually resort to the higher-order statistics of channel outputs and impose strict constraints on the source signal. In this paper, we propose a novel method to estimate the basis frequencies for blind identification and equalization of time-varying single-input multiple-output (SIMO) finite-impulse-response (FIR) channels. The proposed method exploits only the second-order statistics of channel outputs and does not require strong conditions on the source signal. As a result, it exhibits superior performance to the existing basis frequency estimation methods. The validity of our method is demonstrated by numerical simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is known that the constant modulus (CM) property of the source signal can be exploited to blindly equalize time-invariant single-inputmultiple-output (SIMO) and finite-impulse-response (FIR) channels. However, the time-invariance assumption about the channel cannot be satisfied in several practical applications, e.g., mobile communication. In this paper, we show that, under some mild conditions, the CM criterion can be extended to the blind equalization of a time-varying channel that is described by the complex exponential basis expansion model (CE-BEM). Although several existing blind equalization methods that are based on the CE-BEM have to employ higher order statistics to estimate all nonzero channel pulsations, the CM-based method only needs to estimate one pulsation using second-order statistics, which yields better estimation results. It also relaxes the restriction on the source signal and is applicable to some classes of signals with which the existing methods cannot deal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we investigate the channel estimation problem for multiple-input multiple-output (MIMO) relay communication systems with time-varying channels. The time-varying characteristic of the channels is described by the complex-exponential basis expansion model (CE-BEM). We propose a superimposed channel training algorithm to estimate the individual first-hop and second-hop time-varying channel matrices for MIMO relay systems. In particular, the estimation of the second-hop time-varying channel matrix is performed by exploiting the superimposed training sequence at the relay node, while the first-hop time-varying channel matrix is estimated through the source node training sequence and the estimated second-hop channel. To improve the performance of channel estimation, we derive the optimal structure of the source and relay training sequences that minimize the mean-squared error (MSE) of channel estimation. We also optimize the relay amplification factor that governs the power allocation between the source and relay training sequences. Numerical simulations demonstrate that the proposed superimposed channel training algorithm for MIMO relay systems with time-varying channels outperforms the conventional two-stage channel estimation scheme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two-way relaying systems are known to be capable of providing higher spectral efficiency compared with one-way relaying systems. However, the channel estimation problem for two-way relaying systems becomes more complicated. In this paper, we propose a superimposed channel training scheme for two-way MIMO relay communication systems, where the individ-ual channel information for users-relay and relay-users links are estimated. The optimal structure of the source and relay training sequences are derived when the mean-squared error (MSE) of channel estimation is minimized. We also optimize the power allocation between the source and relay training sequences to improve the performance of the algorithm. Numerical examples are shown to demonstrate the performance of the proposed channel training algorithm.