5 resultados para CD11c

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane nanotubes (MNTs) are newly discovered cellular extensions that are either blind-ended or can connect widely separated cells. They have predominantly been investigated in cultured isolated cells, however, previously we were the first group to demonstrate the existence of these structures in vivo in intact mammalian tissues. We previously demonstrated the frequency of both cell–cell or bridging MNTs and blind-ended MNTs was greatest between major histocompatibility complex (MHC) class II+ cells during corneal injury or TLR ligand-mediated inflammation. The present study aimed to further explore the dynamics of MNT formation and their size, presence in another tissue, the dura mater, and response to stress factors and an active local viral infection of the murine cornea. Confocal live cell imaging of myeloid-derived cells in inflamed corneal explants from Cx3cr1GFP and CD11ceYFP transgenic mice revealed that MNTs form de novo at a rate of 15.5 μm/min. This observation contrasts with previous studies that demonstrated that in vitro these structures originate from cell–cell contacts. Conditions that promote formation of MNTs include inflammation in vivo and cell stress due to serum starvation ex vivo. Herpes simplex virus-1 infection did not cause a significant increase in MNT numbers in myeloid cells in the cornea above that observed in injury controls, confirming that corneal epithelium injury alone elicits MNT formation in vivo. These novel observations extend the currently limited understanding of MNTs in live mammalian tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophages in the olfactory neuroepithelium are thought to play major roles in tissue homeostasis and repair. However, little information is available at present about possible heterogeneity of these monocyte-derived cells, their turnover rates, and the role of chemokine receptors in this process. To start addressing these issues, this study used Cx3cr1gfp mice, in which the gene sequence for eGFP was knocked into the CX3CR1 gene locus in the mutant allele. Using neuroepithelial whole-mounts from Cx3cr1gfp/+ mice, we show that eGFP+ cells of monocytic origin are distributed in a loose network throughout this tissue and can be subdivided further into two immunophenotypically distinct subsets based on MHC-II glycoprotein expression. BM chimeric mice were created using Cx3cr1gfp/+ donors to investigate turnover of macrophages (and other monocyte-derived cells) in the olfactory neuroepithelium. Our data indicate that the monocyte-derived cell population in the olfactory neuroepithelium is actively replenished by circulating monocytes and under the experimental conditions, completely turned over within 6 months. Transplantation of Cx3cr1gfp/gfp (i.e., CX3CR1-deficient) BM partially impaired the replenishment process and resulted in an overall decline of the total monocyte-derived cell number in the olfactory epithelium. Interestingly, replenishment of the CD68lowMHC-II+ subset appeared minimally affected by CX3CR1 deficiency. Taken together, the established baseline data about heterogeneity of monocyte-derived cells, their replenishment rates, and the role of CX3CR1 provide a solid basis to further examine the importance of different monocyte subsets for neuroregeneration at this unique frontier with the external environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mouse dura mater, pia mater, and choroid plexus contain resident macrophages and dendritic cells (DCs). These cells participate in immune surveillance, phagocytosis of cellular debris, uptake of antigens from the surrounding cerebrospinal fluid and immune regulation in many pathologic processes. We used Cx3cr1 knock-in, CD11c-eYFP transgenic and bone marrow chimeric mice to characterize the phenotype, density and replenishment rate of monocyte-derived cells in the meninges and choroid plexus and to assess the role of the chemokine receptor CX3CR1 on their number and tissue distribution. Iba-1 major histocompatibility complex (MHC) Class II CD169 CD68 macrophages and CD11c putative DCs were identified in meningeal and choroid plexus whole mounts. Comparison of homozygous and heterozygous Cx3cr1 mice did not reveal CX3CR1-dependancy on density, distribution or phenotype of monocyte-derived cells. In turnover studies, wild type lethally irradiated mice were reconstituted with Cx3cr1/-positive bone marrow and were analyzed at 3 days, 1, 2, 4 and 8 weeks after transplantation. There was a rapid replenishment of CX3CR1-positive cells in the dura mater (at 4 weeks) and the choroid plexus was fully reconstituted by 8 weeks. These data provide the foundation for future studies on the role of resident macrophages and DCs in conditions such as meningitis, autoimmune inflammatory disease and in therapies involving irradiation and hematopoietic or stem cell transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Individuals infected with mycobacteria are likely to experience episodes of concurrent infections with unrelated respiratory pathogens, including the seasonal or pandemic circulating influenza A virus strains. We analyzed the impact of influenza A virus and mycobacterial respiratory coinfection on the development of CD8 T cell responses to each pathogen. Coinfected mice exhibited reduced frequency and numbers of CD8 T cells specific to Mycobacterium bovis bacille Calmette-Guérin (BCG) in the lungs, and the IFN-γ CD8 T cell response to BCG-encoded OVA was decreased in the lungs of coinfected mice, when compared with mice infected with BCG alone. Moreover, after 2 wk of infection, mice coinfected with both pathogens showed a significant increase in the number of mycobacteria present in the lung compared with mice infected with BCG only. Following adoptive transfer into coinfected mice, transgenic CD8 T cells specific for OVA257–264 failed to proliferate as extensively in the mediastinal lymph nodes as in mice infected only with BCG-OVA. Also noted was a reduction in the proliferation of BCG-specific CD4 transgenic T cells in mice coinfected with influenza compared with mice infected with BCG alone. Furthermore, phenotypic analysis of CD11c+ dendritic cells from mediastinal lymph nodes of the infected mice showed that coinfection was associated with decreased surface expression of MHC class II and class I. Thus, concurrent pulmonary infection with influenza A virus is associated with decreased MHC expression on dendritic cells, reduced activation of BCG-specific CD4 and CD8 T cells, and impaired clearance of mycobacteria.