3 resultados para CARBON AND NITROGEN NUTRIENTS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon (C) and nitrogen (N) stable isotopes offer a powerful tool for assessing the extent of tissue assimilation of dietary components. However, the method relies on knowledge of diet-tissue isotopic discrimination and how quickly diet shifts become apparent in various tissues. In the present study, blood plasma and blood cells, tissues that are easily obtained under field conditions, were used to validate the stable isotope method over a period of 4-5 weeks using captive long-nosed bandicoots (Perameles nasuta). Diet-tissue discrimination effects appeared to be small. For C, derived diet-tissue isotopic discriminations were 1.4‰ for blood plasma and -0.2‰ for blood cells. For N the values were 2.8‰ and 2.1‰, respectively, and were independent of the nitrogen content of the food. C and N turnover measurements in the blood plasma and cells of the bandicoots indicated that blood plasma provides dietary information integrated over a period of ∼3 weeks, whereas blood cells give an impression of the assimilated diet over a period of as much as half a year. These turnover rates were low compared with the little information available for birds and eutherian mammals, and probably relate to the typically low metabolic rate of marsupials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants modify metabolic processes for adaptation to low phosphate (P) conditions. Whilst transcriptomic analyses show that P deficiency changes hundreds of genes related to various metabolic processes, there is limited information available for global metabolite changes of P-deficient plants, especially for cereals. As changes in metabolites are the ultimate ‘readout’ of changes in gene expression, we profiled polar metabolites from both shoots and roots of P-deficient barley (Hordeum vulgare) using gas chromatography–mass spectrometry (GC-MS). The results showed that mildly P-deficient plants accumulated di- and trisaccharides (sucrose, maltose, raffinose and 6-kestose), especially in shoots. Severe P deficiency increased the levels of metabolites related to ammonium metabolism in addition to di- and trisaccharides, but reduced the levels of phosphorylated intermediates (glucose-6-P, fructose-6-P, inositol-1-P and glycerol-3-P) and organic acids (α-ketoglutarate, succinate, fumarate and malate). The results revealed that P-deficient plants modify carbohydrate metabolism initially to reduce P consumption, and salvage P from small P-containing metabolites when P deficiency is severe, which consequently reduced levels of organic acids in the tricarboxylic acid (TCA) cycle. The extent of the effect of severe P deficiency on ammonium metabolism was also revealed by liquid chromatography–mass spectrometry (LC-MS) quantitative analysis of free amino acids. A sharp increase in the concentrations of glutamine and asparagine was observed in both shoots and roots of severely P-deficient plants. Based on these data, a strategy for improving the ability of cereals to adapt to low P environments is proposed that involves alteration in partitioning of carbohydrates into organic acids and amino acids to enable more efficient utilization of carbon in P-deficient plants.